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I. INTRODUCTION.
A Electromagnetic Coordinates.

1. It has been thought advisable to reserve an account of the general aims and scope
of the following paper till a few preliminary matters have been disposed of.

2. Consider the following statement, of the truth of which probably no one will
doubt. If a body on being moved from a position A to a position B were found
thereby to have lost a charge of electricity, physicists would not be content to explain
the circumstance on the mere ground that it had left its charge behind. They would
hold that processes had gone on, precisely similar to such as would have been required
to divest it of its charge, had it remained in its first position A.

This has an important bearing on the way in which the “ electric displacement ” is
related to matter. The polarisation thus called is some sort of polarisation of matter,
and, this polarisation vs carried about by the matter when 1t moves. There certainly is
no lack of evidence that electric actions go on in space where there is, to the best of
our knowledge, no matter. In this space, however, is a medium of some sort, which
is intimately related to matter, and certainly affected in some way by the motion of
matter. For the present we must, for the sake of simplicity, be content to assume
that the strains of this medium are, if it only hounds matter, continuous with those
of matter, and if it permeates matter, are at places common to both matter and the
medium identical with those of matter. (This may or may not be true. I only say
that in the first development of the theory of this paper it must for simplicity be
assumed.) This will not prevent us from regarding the slipping of the one medium
over the other as the limit of a rapid shear. With this assumption the medium in
question will appear in our equations merely as matter with zero density, but other
physical quantities not zero.

Both for the medium referred to, and for matter, the statement would seem to
remain true that the polarisation called electric displacement is a property that is
carried about by the medium experiencing it.
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686 MR. A. McAULAY ON THE MATHEMATICAL

3. In choosing the coordinates of any mechanical system it is, of course, only
necessary to take them so that when given they completely specify the instantaneous
position of the system. But as in all ordinary dynamical problems, so in the general
electromagnetic problem, there may be all the difference in the world between one set
and another in respect to the simplicity of the investigations in which they are
employed, and the amount of light they throw on the interdependence of the parts
of the system.

Now, I believe I am right in saying that all writers on the present subject take as
the electric coordinates the three coordinates of the vector Dds* for every element of
volume ds in space where D is the electric displacement at the point. According to
the view just advanced that D is the measure of a property of the matter occupying
the element ds, which is carried about with the matter, these are unsuitable coordi-
nates. According to that view it is probable that the electric current is as intimately
connected with the matter in which it resides, as is the electric displacement. It
would seem to follow that the current components could not in general be considered
as the rates of variation of the corresponding electric coordinates.

4. Suppose all space split up into a series of elementary parallelepipeda which move
with matter.  Let 4= d2/, & d3;, & d2. be the six vector faces of one such parallele-
piped. We shall take for our electric coordinates the three quantities SD'ds,, SD'ds),
SD'dz,, where D' is the electric displacement at the point, for every element in space.
[The reason for the dashes will appear immediately. ]

Moreover, we assume that the same expressions, when D js replaced by €', the
current, are the rates of variation of the corresponding coordinates. In other words,
the current €’ at any point is defined by the equation

» ger __ ASDdsY
SCAY =" (1)
where d3 is any vector element of surface which moves with matter, and d/d¢ denote
differentiation with regard to the time which follows the motion of matter. Thus the
whole current through any surface which moves with matter = the rate of variation
of the whole displacement through that surface.

B. Mathematical Machinery.

5. As might be expected, the mathematical machinery that appears to be most
convenient for investigating as fully as possible the consequences of these assump-
tions, and others intimately connected with them, is novel. And I may remark in
passing that what Professor Tarr persistently and with complete justice emphasizes
as one of the greatest boons that Quaternions grant to ungrateful physicists, viz.,

* Throughout this paper Mr. Huavisipe’s practice of replacing MAXWELL'S German lotters by thick
ordinary type is followed.
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their perfect naturalness, seems to me to receive illustration in the methods about to
be described.

The notation in the present paper will be mainly the same as that of my former
paper on a ““ Proposed Extension of the Powers of Quaternion Differentiation.”*

As in that paper (which will for the future be referred to as “ the former paper”),
a fixed position of all the matter in space will be taken as a standard of reference.
Most of the following symbols have exactly the same meaning as before.

p is the coordinate vector of any particle of matter in the standard position ; p’ the
coordinate of the same particle in the present position, so that p’ may be regarded as
a function of the independent variables, ¢ (the time), and p. ds, ds” denote elements
of volume of the same particle in the standard and present positions; ds, ds’ similar
elements of surface; and Uy, Uy’ the unit normals at ds, ds’. In the present paper
another notation will also be used, defined by

ds = Uvds, d&’ =Uv'ds’. . . . . . . . (1),
whence ‘

Up=Uds, ds=Tds . . . . . . . . (2,

and similarly for U ds’, T ds’. This meaning of % is scarcely likely to clash with the
usual summation meaning (which will also be freely used in the present paper), since
in the present use the 3 will always be preceded by d, a combination that would be
rare with the ordinary meaning.

With this notation equations (2) and (3) of the former paper take the somewhat
briefer form

[(j)dp:”d)VdEA B ) 8
[oas=[{jeads . .. ... (@

In connection with these equations it is well to call attention to the following usual
conventions which will be strictly adhered to. The right-handed system of rotation
is adopted. U, or d2, when regarded, as in the last equation, as the normal of the
boundary of any region, is always drawn from the region bounded. Thus, if Uv is
regarded as the normal to the boundary of a dielectric at its junction with a con-
ductor, it is drawn from the point of the bounding surface into the conductor. The
positive direction, that of dp in equation (3), round the boundary of a surface, is that
of positive rotation round a proximate positive normal, d% in equation (3). Thus the
positive direction round the boundary of a magnetic shell whose positive normal is
in the direction of magnetisation is that of the equivalent current.

V will have the usual meaning with regard to p, and V' the same meaning with

* ¢ Proceedings of the Royal Society of Edinburgh,” 1890-91, p. 98,
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regard to p’. A, a particular form of V, is used when we wish to imply that the differ-
entiations of the V are to refer to all the factors of a term, Thus

V DAE = 39 (VDIE)/ox.

If o be an independent variable vector, ,V, ,A, have the same meanings with regard
to o as V, A, with regard to p.

(d is a symbol of differentiation which is thus defined :—if = be an independent
variable self-conjugate linear vector function of a vector, given in terms of the scalars
P and ¢ by means of the equations

wi = Pv + Nj 4+ Mk
w = Ni + Qj + Lk
ok = Me+ Lj + RE,

«(I 1s a symbolic self-conjugate linear vector function of a vector given by
o Qim0i.0 4 .0 0
200 =255+ Joyt by

) 0 .0 0
20j= 5y + Y0t by
.0 ) 0
2. Uk = zm+ jﬁ—l—%sﬁ.

Numerical suffixes are used exclusively to denote to what symbols the differentiations
of a V or U refer, the operator and the operand having for this purpose the same
suffix. '

Let Q (e, B) be any function of two independent vectors «, B, which is linear in
each Then { is defined by the equation

QL D=Q(VLp) =QC 1)+ Q(5,7) + Q& ).
Similarly if R («, B, v, 8) be linear in each of its constituents
R (& & & &) = R (Vo pis Vo o),

and =o to any number of pairs of {s.

At a given instant p’ is a function of p only, and, therefore,

dp' = — SdpV.p =xdp,

where y is a linear vector function which is called the strain function. ¢, yj, ¥, m are
all functions of x given by the equations

xw = qyuq,
where ¢ is a quaternion and ¥ a self-conjugate linear vector function of a vector.
X being the conjugate of y,
Xx =9 =",
_Sdp,) dp) dp,; __ ds’

" Sdp, dp, dp, T ds?



THEORY OF ELECTROMAGNETISM. 689

where dp,, dp,, dp, are three arbitrary independent increments of p, and dp,/, dp,’, dp,
the consequent increments of p’.

F and ¢ will have meanings closely connected but not identical with their meanings
in the former paper. This will be explained later.

6. The displacement, current, magnetic force, &c., at the point p’ will not be denoted
by D, C, H, &c., but by D', ¢, H', &c., with which the former symbols are connected in a
way now to be described. In MAxwErrLL’s ¢ Elect. and Mag.,” 2nd ed., § 12, he*
remarks : ““ Physical vector quantities may be divided into two classes, in one of
which the quantity is defined with reference to a line, while in the other the quantity
is defined with reference to an area. . . . In electrical science, electromotive and
magnetic intensity belong to the first class, being defined with reference to lines.
When we wish to indicate this fact we may refer to them as intensities. On the
other hand, electric and magnetic induction, and electric currents, belong to the
second class, being defined with reference to areas. When we wish to indicate this
fact we shall refer to them as fluxes.” Now in connecting dashed with undashed
letters it is absolutely necessary to bear in mind whether the vectors indicated are
intensities or fluxes. The connection between D and D’ will differ from that between
H and H'.

7. Nearly all the physical vectors at a point will belong then to one of the
following classes :—

Class I. Intensiizes.
(Examples : V, A, E, H, 0, d=/ds, ,VI.)
o being a vector of this class, the three allied vectors, o, o', ”, are connected by
the equations

Sdpo = 8dp's’, o' =x o, ' =g g =40 . . . . (5)

Class I1. Fluxes.
(Examples : B, C, D, dp/ds, ,VI.)

7 being a vector of this class, the three allied vectors, =, 7/, 77, are connected by the
equations

Sd3r=8d3'7, 7/ =m™lxr, 7" =q¢ W9=m r . . . . (6).

* This part of the present paper should be read in connection with Maxwuur’s paper “On the
Mathematical Classification of Physical Quantities,” ¢ Collected Scientific Papers,” vol. 2, p. 257, or
¢ Proc. London Math. Soc.,” vol. 3, No. 34. In connection with the naturalness of the present methods, it
may be of interest to note that the present paper was completed before I had seen this most suggestive
paper of MAXWELL's.

MDCCCXCII.—A. 4 T
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I have not hesitated to put the symbolic vector, V, among the intensities since it
obeys all the laws thereof. The definitions of the connection between o, o', and ¢”,
and between 7, 7', and 7, may be taken as the first and third of equations (5) and (6)
respectively. The second and fourth equation of each set are easily deduced from
these by observing that dp’ = xdp, ds’" = my’~'d3 [equations (26) and (37) of former
paper], and that both dp and d3 arve arbitrary vectors,

It should, perhaps, be noticed that these connections between o, 0", and ¢ and between
7, 7, and 77, although very useful and intimately connected with the physical nature
of the vectors indicated are, after all, only definitions, and thus the phrase “ where
such and such a symbol is defined as a flux” will frequently occur below. This merely
means that, having assigned the meaning of one of the three vectors, say 7, by
a physical definition, the allied symbols, 7 and 7”, are defined by saying that the
symbol in question is a flux. '

The connection between o and ¢’ may be put in words, thus :—If o be un intensity,
any line integral of o referred to the present position of matter is equal to the corre-
sponding line integral of o referred to the standard position of matter. Of course, by
the word “corresponding ” it is implied that the two line integrals are to be taken
through the same chains of matter. Similarly as to 7:—If v be « flux, any surface
wmtegral of 7 referred to the present position of matter is equal to the corresponding
surface integral of T referred to the standard position of matter.

8. It is convenient to give here the following four simple but useful propositions.

Prop. I. If o, o, be two wntensities, Vo, s o flux.—By this is meant that
Vo, o, bears the same relation to Voo as does 7 to 7 in equations (6). To prove

Sd3o,0; = m™iSx'dY o/x ov [eq. (5) § 7]
= 8d¥/o,/a; [Tarr's ¢ Quaternions,” 3rd ed., § 158, eq. (3) |.

Prop. I1. If o, v be an wntensity and flux respectively, we have Sords = Sa'r'ds’

= So”7"ds’.—For by equations (5) and (6) § 7, So’'r’ = m~!8or, and So”'7" = So'7’,
As particular cases we have )

SBHds = SB'H'ds', SCAds = SC'A’'ds’, SDOds = 8D'e'ds’ . . . (7).

Prop. III. If o be an intensity VVo s a flux.—By this is meant that VV'e’ bears
the same relation to VVo as does 7 to 7 in equations (6). For any surface

[[sd290 = [Sdpo [eq. (3) § 5 above] = [8dp'0" [eq. (5)1= [[8a2V’ [eq. (3) ]

Hence, Sd2Vo = Sd¥'V'e’, or VVo is a flux,
As particular cases, note that if, as we shall do directly, we assert that

470’ = VV'H', B= VVA,
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and that B, C are fluxes, and H, A intensities, it will follow that

47C = VVH, B ' =VV'A/

Prop. IV. If 7 be a flux SVrds = SV'7'ds’.—Proved by applying eq. (4), as we
applied eq. (8) to prove Prop. III.  As particular cases notice that

SVDds = SV'D'ds, SVOds = SVCds’ . . . . . . (8).

9. Intimately connected with these two classes of vectors are two classes of linear
vector functions of a vector.

In the following statements, as indeed throughout the paper, o will denote an
intensity, and = a flux.

Class L. of Linear Vector Functions of a Vector.

(Examples :—The reciprocal of any function of Class IL ; ordinary stress, ¢, ®;
heat and electric conductivity, y, R~1; specific inductive capacity, K; magnetic
permeability, u).

Q being of this class, the three allied symbols, Q, Q', ", are connected by the
equations

So.Qods = So,/ Q' a)/ds’ = S, Q" o) ds } 9)

Q' =m~ xQx, Q"= m Yoy

o, and o, being any two intensities.

Class II. of Linear Vector Functions of a Vector.

(Example.—The reciprocal of any function of Class L., e.g., electric resistance, R).
T being of this class, the three allied symbols T, T, T are connected by the
equations
Sr.Trds = S,/ Y7/ds’ = St,/*"r,/ds’
(10)

T =my ~'Tx"L T = mypTITY!

7, and 7, being any two fluxes.

Of course, it is understood that Q' and T’ are not, as usual, the conjugates of
0 and T. Note, that if Q or T is self-conjugate, then Q" and Q" or " and T” are
also self-conjugate. The first and second of each of the sets of equations (9) and (10)
may be taken as the definitions of @, 0", ', ¥”. The third and fourth equations of
each set can easily be proved by equations (5) and (6) to follow.

4T 2
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10. The following easily-proved propositions should be noticed :—

Prop. V. If Q be of Class L., then Q= vs of Class IL., and of T be of Class II.,
then T=1 45 of Class I.

Prop. VI. Qo is a flux, and Tt is an intensity.

Prop. VII. 8V (Qo) ds = SV’ (Q'¢”") ds". (Props. IV. and VI.)

Prop. VIII. O'd3 is the same function of QdS, as dp’ is of dp, and T'dp’ is the same
Junction of Tdp as d s of A% or  Q'd3 = xQds, T'dp’ = my' ~17dp.

Prop. IX. Q'A'ds’ = x0Ads. [Prop. VIIL and eq. (4).]

11. Going, now, back to our definition of electric coordinates (§ 4), since for each
element they may now be written SDdS,,, SDdS;, SDdS,, and since d3,, &c., are constants,
we see that the choice of coordinates is equivalent to regarding D and not D’ as the
independent electric variable at any point. Further from eq. (1) § 4, and eq. (6) § 7,
we have

SCd3 = dSDds/dt,
or, since % is an arbitrary constant vector,

C=dD/dt . . . . . . . . . . (1),

which is, of course, inconsistent with the equation ¢ = dD’/dz.

C.— Preliminary Justification of the Foundutions of the Present Theory.

12. I have deliberately led up as quickly as possible to a description of the mathe-
matical machinery to be used subsequently, as it has been necessary to notice
incidentally some of the essential characteristics of the fundamental assumptions and
the methods of investigating their consequences advocated in the present paper. As
a preliminary justification of these assumptions, I cannot do better than indicate the
line of thought which led up to them.

In studying MaxweLL’s theory, and seeing how beautifully it was built up step by
step from a mass of experimental facts, till the consistent whole stood revealed, it
seemed to me that, notwithstanding the general harmony of its different parts, there
was just here still something to be desired, some single plan that should govern the
whole.  This statement may not seem justifiable, so I instance two examples of the
want of harmony. In one part of his treatise, the kinetic part, he works out the con-
nections between the different parts of his theory by the general methods of
Dynamics. But not so in the statical part. It would seem that the statical part of
the subject, in such a plan as just mentioned, ought to appear as a particular case of
the kinetic, whereas, in MAXWELL’S treatise, the statical terms in the equations are
merely added on to those deduced from dynamical reasoning. The same remark
applies to the terms necessary to produce the mechanical effects of magnetism
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[compare for proof § 603 eq. (11) with the corresponding eq. (the last on p. 239) of
§ 619], and similar remarks, apply to the treatment in § 630 et seq. of the energy of
the field. How to bring these various parts of the subject under the dynamical
treatment I did not see, strictly on MAXWELL'S own lines. Again, in considering the
general equations of the electromagnetic field (§§ 608, 609) he speaks of a generalised
force E. This generalised force, quite contrary apparently to dynamical analogies,
has, not a single definite effect, partly kinetic and partly static, but two independent
effects, one static and the other kinetic. On trying to trace out the reason of this, I
could not arrive at any certain result strictly on MAXWELL'S own lines. It seemed to
me as if the double effect of E was simply assumed. [If it merely were analogous to
an ordinary dynamical reaction, then it could not be associated with such external
forces as result from electrolysis. |

18. Whether these and many other similar questions which occurred, some of which
will appear below, can, strictly speaking, be denominated difficulties, is of no conse-
quence. Suffice it that they led to the following considerations. MAXWELL has
built up a theory whose axioms can® be put down in a definite form. Cannot, then,
all his results (electrostatic, electrodynamic, magnetic, and electromagnetic) be
developed as consequences of these axioms in one application of dynamical reasoning ?
Cannot we by such a single application obtain all MAXWELL'S equations from (A) to
(L) in §§ 591 to 614, as well as his stress results contained in other parts of the
treatise, and by particular simplifying assumptions, shew that the ordinary electro-
static and magnetic theories are particular consequences of our general results ?

This led me to attempt to apply in a perfectly rigorous and general manner the
well-known equation

s[Lar+sfQsgae=0 . . . . . ...

(where L is the Lagrangian function, “modified ” if necessary, of any mechanical system
of which ¢ is a coordinate, and Q the external force of type ¢, and where the initial
and final positions and times are not subject to variation) to the present case. The
way I proposed to apply it was to assume all matter to be in any possible state as to
strain and as to electric phenomena, then to vary all the geometrical coordinates by
simply giving to each element of matter an arbitrary displacement, and also to vary
all the electric coordinates, and trace the mathematical consequences. [Note that on
MaxwEeLL’s theory (at least as I understand it) these two variations are all that can
be made, a variation in the magnetism being determined by the above variations.]

14. And it was here at the outset that the greatest difficulty of any met with in
the investigation occurred. ~Consider a particular consequence of assuming that the
electric coordinates are the three components of D’ for every point of space. If by

* It would be more correct to say some of whose axioms.” I wish to imply that I thought it advis-
able to fill in the remainder tentatively and seek the result.
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the variation of geometrical coordinates an element ds’ of surface where there is finite
surface density of electricity be moved from P to P’, then in general the element of
matter will by the variation of the geometrical coordinates only be entirely deprived of
its charge, for this charge will be left behind at P. This result is, to say the least,
an unfortunate one, and to be avoided, if by legitimate means it is possible. Still
more disastrous results are arrived at if we assume that the components of D’ for every
element of matter are the electric coordinates, for then the charge in the whole of
space is varied by a mere variation of the geometrical coordinates.

The legitimate way out of the difficulty seemed to be to assert that these electric
coordinates, though theoretically permissible, were very unsuitable. To find suitable
ones it was natural to use the principle that the electric coordinates must be such that
the variation in the geometrical coordinates does not alter the charge of any portion
of matter. This is, of course, ensured by assuming that SD'dS’ is unaltered by
variation of the geometrical coordinates, and from this it is but a step to the asser-
tion that SD'd3’ is itself a suitable electric coordinate.

Intimately connected with this question of the independent variation of geometrical
and electrical coordinates is that of the correct expression for an electric current in
(say) an arbitrarily moving fluid. It is not necessary to present all the reasons that
occurred to me for the form already described (§ 4) as these are sufficiently indicated
in the above considerations of variation of coordinates.

D. An Analogy.

15. The resemblances and differences between the present fundamental assumptions
and what I take to be MAXWELL'S, are, perhaps, more clearly brought out by
analogy. .

I will first describe what I understand to be the analogy which MaxwrLL allows
himself throughout his theory, in order more closely to realise the interdependence of
the various physical quantities considered, and as an aid to memory. The analogy
contemplates the whole of space as being filled with an incompressible liquid. In
dielectrics the liquid is, as it were, held in elastic meshes, in the form of closed cells,
so that if it be displaced it tends to return to its original position. In the ideal
conductor there are no such meshes, or rather there are meshes which do not
form closed cells, so that the liquid can move through them, but is resisted while in
motion. An actual body which admits some conduction, but behaves also like a
dielectric will be typified by meshes which allow a slow leakage of the liquid. Now
suppose into any space we introduce from some external source more liquid. This
foreign liquid will be what is called the electric charge of that space, and it may be
measured (since the liquid is incompressible) by the surface integral over the
boundary of the space considered of the displacement of the original liquid outwards.
Thus, “electric displacement ” is represented in the analogy by a flux of the liquid.
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The “conduction” current is measured by the current of jforeign liquid, and the
“displacement” current (indicated in the present paper by the term * dielectric”
current) by that of the original liquid. In a simple conductor there is nothing to
distinguish foreign from original liquid, and the conduction current in this case is
represented by the whole liquid current.

A similar but not identical analogy will hold in the theory now advocated. For
fixed matter the whole of the foregoing would be true, but not for moving matter.
The liquid in the present analogy must not be incompressible, but must have a
property in connection with matter which corresponds to the property of an incom-
pressible liquid with reference to space. An incompressible liquid is one of which
only one definite quantity can occupy an assigned space. In the present analogy we
must say, instead, that the liquid is contained by matter, and that a given portion of
matter always contains the same quantity of liquid. If by any means we pump
foreign liquid into this portion, then an equal quantity of liquid must pass out of
the boundary of that portion of matter into neighbouring matter, and thus in the
present analogy as in the former, electric displacement will have for analogue the flux
of the liquid, but not as in that case, across a surface fixed in space, but across a
surface fixed relatively to matter.

Similar remarks apply to currents.

E. Plan of the Paper.

16. It will conduce to clearness to give some account here of the objects and aims
of what is to follow. The part of the paper succeeding this introduction is in three
main divisions : The groundwork of the theory; The establishment of general results,
and The detailed examination of these results.

The groundwork of the theory, though not the longest of these, calls for most
attention here. It is divided into two parts, Fundamental asswmptions and Pre-
liminary dynamical and thermodynamical considerations. I do not propose to give
here a résumé of the different parts, but to call attention to certain prominent features.

The two most important of the fundamental assumptions are, perhaps, first, that in all
cases 47C = VVH, which I take to be one of the most characteristic features, if not the
most characteristic, of MAXWELL’S theory, and secondly, that the modified Lagrangian
function per unit volume, though, of course, it contains H, does not contain any term
involving magnetic moment per unit volume or magnetic induction. Neither of these
assumptions seems to be at variance with MAXWELL'S, and, as hinted, the first is
taken up mainly because it is a fundamental feature in his theory. From the first it
follows that C must obey the laws of incompressibility, and this naturally leads to
the assumption that D also invariably obeys those laws. The second leads to very
important consequences, which, I believe, have not before been traced, and which I
wish to call attention to here. Though not put quite in this form below they amount
to this, that VI, where [ is the modified Lagrangian function per unit volume of the
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standard position of matter, obeys the laws of incompressibility that round every
circuit there is an electromotive force equal to the rate of decrease of the surface
integral of 4myVI through the circuit, and that zVI — H/4w appears in subsequent
equations in such a manner as to compel us to identify it with the magnetic moment
per unit volume.® It is clear, then, that 4myV/ is, according to the present theory, the
magnetic induction. As the theory is developed below it is convenient to define B
as equal to 4m4 VI and call B the magnetic induction, leaving the justification till we
examine the detailed consequences of the theory. It is well to insist on this result
here, as it does not appear obvious in the work below, but only comes out when a
general review of a great part of the paper is made. To put the matter in the form
of a proposition :—

If the two fundamental assumptions are made—(1) that 4xC = VVH, and. (2), that
l, the Lagrangian function per wumit volume, can be expressed in terms tnvolving H
but independent of magnetic induction and of magnetic moment per unit volume, then
the magnetic induction must be == 4mg VL.

17. The other most important features of the fundamental assumptions are first
those already described with reference to the electric coordinates, and the expression
for the current in terms of the displacement ; and secondly the manner in which are
treated the two currents, conduction and dielectric (the latter being inappropriately,
on the present theory, denominated the ¢ displacement current”). If there are (and
physicists seem agreed on the point) two independent currents whose sum appears in
the equation 47C = VVH, and whose swm obeys the laws of incompressibility, it seems
to me of the nature of a truism that there must be also two independent electric dis-
placements whose sum obeys the laws of incompressibility. I therefore, from the very
beginning, recognise two displacements, d and k, which 1 call, for want of better
names, the dielectric and conduction displacements.t This naturally leads to the
contemplation of two independent kinds of electromotive force. This last, however,
is subsequently satisfactorily disposed of.

18. Before leaving the fundamental assumptions, let me remark that though in some
important respects the present theory may seem to differ from MAXWELL’s, it will be
found, T think, that just where the difference seems to be most, marked, is MAXWELL’S
theory most vague. All the differences, if they really be such, have been forced on
me unwillingly in the attempt to put into definite form what I take to be the essence

* Strictly speaking, the last clause should be modified by the condition ¢“if the present position be
taken as the standard position.” This, however, is only an accident of the particular form of enunciation,
which, at the present stage, is unavoidable.

+ Perhaps it would be better to call them the elastic and frictional displacements or the reversible and
wrreversible displacements. I wish to leave this point open for those better qualified to decide. Of the
three sets of terms suggested above, the last seems to be the best. The only reason for adopting in the
present paper the names given in the text is to imply the origin of the assumption that there are two
such displacements. Of course, if we call the two displacements reversible and irreversible, we must
also call the corresponding currents reversible and irreversible.
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of MaxwgLL’s theory. At any rate theresults, though not in every respect identical
with MAXWELL’s, are yet so nearly identical that the true matter for surprise is that
they differ so little, and in such unimportant ways, from his.

It must be added, to prevent misconception of my own views, that I by no means
consider proven what I regard as the key to Maxwrrr’s theory, and what I have
strictly adhered to in this paper, the assumption that under all circumstances
47C = VVH. My position rather is, that while this assumption may or may not be
true, it is desirable to investigate as generally as possible what must be true, and
what cannot be true if the assumption is made. In other words, I do not think that
MaxweLr’s theory has yet had a fair trial, even at the hands of mathematicians, and
the present paper is an attempt to provide more ways and means than hitherto have
been available for such a trial. The -methods adopted are equally applicable to other
sets of fundamental assumptions.

19. Turning to the second part of the groundwork, the preliminary dynamical
and thermodynamical considerations, it is necessary to remark that these considerations
though not limited to an electric field, seemed absolutely necessary in order thoroughly
to investigate the consequences of the assumptions. With regard to the first two
sections of this part of the paper on the modified kinetic energy and the free energy,
and on the entropy there is nothing which is likely to be questioned. In the third
section on frictional forces, conduction of heat and dissipation of energy, I enunciate
a principle which opens the way for much criticism. I would beg any readers to whom
the form of enunciation is repugnant, to suspend their judgment as to the validity of
the principle, not only until the first justification of it, but until they have seen it in
action as it were, later in the paper. What was wanted was to bring this group of
phenomena, which are undoubtedly closely connected, under the same sort of treatment
as is accorded to the reversible phenomena of a system by means of its Lagrangian
function, and the (dependent) entropy.

20. The way being thus paved, in the next principal division of the paper are
deduced the general results of the theory, the most important of which are the equa-
tions of motion. These are considerably more general than the ordinary equations of
the field, and thus we are led to the last division of the paper, the detailed examina-
tion of these results. The chief sub-divisions of this part are the comparison with
MaxwrLL’s results, a discussion from the point of view of the present theory of
thermoelectric, thermomagnetic, and the Harn effects, and the transference of
intrinsic energy through the field.

In comparing with MAXwELL’S results, wherever there is agreement, it is considered
unnecessary to investigate further the detailed consequences. Where there is dis-
agreement the physical consequences are traced with more detail, and in no case can
it, 1 think, be said that the results of this part of the paper are condemnatory of the
present theory. In this place, too, the bearing of the present theory on the question
of convection currents is discussed.

MDCCCXCIT.—A., 4 U
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Perhaps a clearer insight into the true bearings of the present theory is obtained by
the attempt below to explain thermoeclectric, thermomagnetic, and the Harr effects
than by any other part of the paper. Especially clearly do some of the restrictions
imposed by the condition 47C = VVH come out.

21. In the last sub-division it will be found that I disagree entirely with Professor
PovxTING’s interpretation of his own results, and show how quite a different and, 1
think, simpler flux of energy may be made to account for the changes of intrinsic
energy in different parts of the field. In particular, this interpretation would restore
credence in what Professor PoYNTING considers he has shown to be a false view, viz.,
that among other aspects of a current of electricity it may be looked upon as some-
thing conveying energy along the conductor. This part of the subject, although
deduced from the present theory, is shown to be true on Professor PovynriNe’s own
premisses.

22. It is well here to call attention to what might prove confusing otherwise. In
what follows E, e, F, ®, and some allied symbols, stand for certain external forces.
But there are three different meanings given in different parts of the paper to these
symbols. They are originally defined as the whole external forces of the different
types. But in treating of frictional forces, &e. (§§35 to 42) it is convenient to regard
them as meaning only those parts of the forces which are due o friction and the like.
Again from § 50 onwards it is convenient to regard them as meaning only those parts
of the forces which are wndependent of friction and the like. This inconvenience is
incurred to avoid the greater evil of a large additional array of symbols.

With this exception,® and one or two other trifling ones, which are noticed in their
places, nowhere has the meaning of a symbol been changed throughout the paper.

II. GrRoUNDWORK OF THEORY.
A. Fundamental Assumptions.

23. We assume that the Lagrangian function, L, of all matter in space can be
expressed in the form

L=([[ws + [ftas . . ... ...

where [, I, are functions of certain independent variables which determine the state of
the body at the point. The volume integral extends throughout space, and the sur-
face integral over certain specified surfaces. The entropy I of all matter in space
will be assumed to be of the form

# Since completing the paper I have discovered a notable exception which is not otherwise noted than
in this footnote. It does not seem likely to lead to confusion; therefore I retain it. Most frequently in
the present paper ¢ stands for the typical scalar coordinate of a dynamical system, but it is not
infrequently used, as in the former paper, for the quaternion of the rotation-operator ¢ ()¢~
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’F:H(;‘ds}ﬁ}‘;ds N )

and fand f; will be determined from the values of [ and /, in & manner that will be
described later on.  All thermal phenomena not determined by F, and all forces of the
nature of friction, will be supposed given by a third function X, given by

X::”’J’Occls-{-”xsds. C e e e (3,

where z, x,, unlike f; f;, do not in any way depend upon L. The way in which these
forces and the thermal phenomena depend upon X will be explained later. We shall
call X the dissipation function. It is, in fact, a generalisation of Lord RavLrEiGH'S
dissipation function (‘ Theory of Sound,” Ist ed., §81).

24. The absolute temperature of any element of matter will be denoted by €. The
vector ® (assumed an intensity—§ 7 above) is defined by the equation

0=Vl e e e e e e e e (45)
Since both ® and V are intensities, we have
@=v0 . . . . . . . ... (5

All electric and magnetic phenomena are supposed ultimately to depend upon the
magnitudes and rates of variation of two fluxes (§7), d, k, called respectively the
dielectric displacement and the conduction displacement. The whole displacement,
D, is defined as the sum of these two, so that

D=d+k e e e e e e e, (6)
D must satisfy the two conditions of incompressibility for vectors, ¢.c.,
SVD=10, [SdZDl,,;=0 . . . . . . . . (7),

the notation [ 7, being as defined on p. 119 of former paper, i.e. the suffixes ¢ and b
denote the two regions bounded by a surface of discontinuity, and [ ], ; stands for
[ L+4T[ 1. Since Disa flux, it follows by Prop. IV., §8, above, that

SVD =0, [SdSD]y,=0. . . . . . . . (8).

The dielectric current, ¢, the conduction current, K, and the whole current, C, all
assumed to be fluxes, are given by the equations

e=d K=k . . . . . . . . .. 9),

C=D=c¢c+XK . . . . . . . . . (10)
4 U 2
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25. The differentiations with regard to time implied by these dots are differentia-
tions for a fixed element of the standard position of matter, w.e., they are differentiations
that follow the motion of matter. Itis clear then that they are commutative with V,
but not with V. Hence, from equations (7) and (10),

SVC = 0, [Sd3C],o=0 . . . . . . . (L1,
and, therefore, [equation (8) § 8 above]
SVC =0, (Sd¥C ], =0 . . . . . . . (12).

Since C satisfies the conditions of incompressibility, its surface integral over any
surface only depends on the boundary of the surfuce, and may be expressed as the line
mtegral of a vector H/4m round it. Thus, by equation (3), § 5,

47C=VVH . . . . . . . . . . (138).

H is called the magnetic force, and is assumed to be an intensity, so that (Prop. IIL,,
§8)
4aC=VV'H . . . . . oL (14).

All the vectors, including H, hitherto mentioned, may be discontinuous. But they
are assumed to be finite, so that [[[Cds = 0 for any infinitely small volume.  Suppose
this volume is a disc enclosing a part of a surface of discontinuity in H. Then we
have

0 =|[[[Vvads = [[vism
by equation (4), §5 above, Hence
[VdEH], ;=0 . . . . . . . . . . . (15),
so that the discontinuity in H is entirely normal to the surface. Similarly
[VASH ], 3=0. . . . . . . . . . (16).

26. From what has been said it follows that if d, k and their rates of variation are
given for every point of space, H is not yet completely determined. It is, however, so
determined by one more condition which is proved in § 48 below, and which is given
here as we shall want to use it before proving it. H is one of the independent
variables of which [ is supposed an explicit function. The condition mentioned is that
V! satisfies the conditions of incompressibility. In other words, putting
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dngVi=B . . . . . . . . . . (17),
SVB = 0, [Sd2Bl.ys=0 . . . . . . . (18),

and B is called the magnetic induction.
These are proved by previously proving that

B:VVA.......‘..(IQ),
where A is a vector which satisfies the condition

[VAZA],po=0 . . . . . . . . . (20).

A is assumed to be an intensity, and B a flux, so that (§ 8 above),
SVB =0 , [Sd¥Bl.=0. . . . . . . (21),
B =VVA | [Vds'A'],.,=0. . . . . . . (22)

This relation between B and H is not the usually accepted one, but it is certainly
true on the present theory. It will appear later on that the value thus arrived at
of B', the magnetic induction at the point p’, is independent of the particular position
which is chosen as a standard of reference.

In the present theory I-—assumed a flux—called the magnetic moment per unit
volume is defined by the equation

B—H =4sI'. . . . . . . . . . (23),

from which it does not follow that B — H = 4#I, since B and I are fluxes and H is
an intensity. It does follow, however, that

B' —H' =471 . . . . . . . . . (24).

27. The equations of last article, it will be observed, do not represent fundamental
assumptions. They are given here merely to indicate how the familiar symbols
involved appear in the present theory. We now return to the fundamental
assumptions. .

The independent® variables, of which / is supposed a given explicit function, are

0,0;p0,p,v; 4, D,CH. . . . . . . . (25);
x is supposed a given explicit function of
6,0; v, v; K,H . . . . . . . . . (26)

* See § 31 below.
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Nothing is here said about /, and x,, as it has been thought advisable to see how
much can be explained without their aid. When we come to consider electrostatic
contact potential difference—which for brevity we will in the future call contact-force
—it will be found necessary to suppose I, not zero. For ordinary friction, also, ,
must not be zero. The above assumptions will enable us to take account of (1) all
MaxwEeLL's results, or results corresponding thereto; (2) the stresses, &e., resulting
from variation of specific inductive capacity and magnetic permeability with strain
and temperature ; (3) thermoelectric, thermomagnetic, and the HarL effects ; (4) many
purely mechanical results whose details will be reserved for future treatment. They
do not enable us to take account of (1) sliding friction ; (2) electrolysis; (3) hysteresis
and similar phenomena ; (4) contact-force. All these, however, except (3), can be
taken account of by slight additions to our present assumptions, as in the case of (4)
will appear later.

The object of limiting as above the number of the independent variables entering
into [ and z is to free the mind from unnecessary vagueness. Moreover, the above
assumptions are in one sense necessarily simpler than those made by Professor J. J.
Tromson (¢ Applications of Dynamics to Physics and Chemistry,” 1st ed., chap. vii.) to
explain thermoelectric and thermomagnetic effects, in that the only quantity whose
space-variations appear above in [ or @ is 6, a statement not true of Professor
TromMsoN’s assumptions.  With regard to the forms of 7 and « as functions of their
independent variables, it is simplest at present to make no restrictions.

28. I am a little doubtful whether writers on the present subject recognize two
semi-independent electric displacements at every point, but, as already remarked, it
seems to me to follow, as a matter of course, from the assumption of two independent
currents. The independent variables which have [§ 27 (25)] above been chosen to
take account of these are d and D, though, of course, d and k or k and D might have
been chosen instead. MaxwgLL generally, but not quite without exception, seems to
use the symbol D for what I have called d. I thought, however, that I should be
following the usual custom of subsequent writers by using D for the whole displace-
ment.

If there be two independent electiical displacements, it would seem as though we
must assume, at any rate provisionally, the existence of two independent external
electromotive forces of type D and d. These we shall denote by — E and — e respec-
tively.  This, of course, means that the work done by the said external forces
at the element ds, while D, d change to D4 dD and d 4 dd respectively, is
(SEdD + Se dd) ds. We shall also assume external surface forces of these types
— E,, — e,, external ordinary forces F and F, per unit volume and surface of the
present position of matter,* and an external stress ®, ® being a self-conjugate linear
vector function of Class I of § 9 above. This last statement means that the real

* In the former paper § meant the force per unit volume of the standard position of matter. The
change has been made, since the equations of this paper are thereby simplified.
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stress-function is not ®, but @, .e., that the force exerted on a region at the element
ds! of its boundary is ®' ds’ = m~ly®y d='.

29. The meaning of “external ” may be defined as “not included in the form of
L.” Thus, the external forces include (1) all frictional forces given by X ; (2) forces
that, though not now included in the form of I., can be so included by generalising
the meaning of 7 and /, so as to explain electrolysis, contact-force, and chemical
phenomena ; (3) forces that, through present ignorance we cannot include in X or L,
though they should be so included. Thus, for instance, the external stress ® may be
supposed to be due entirely to viscosity and elastic fatigue, and the first of these will
be accounted for by X. 4

80. 8D’ is due partly to variation of strain and partly to 8D ; let 8'D’ be the latter
part. E and e are assumed to be intensities. Hence (§ 8, Prop. 1I.)

(SESD + Sedd)ds = (SE' 8D 4 S’ 8'd)ds’ . . . . . (27).
A similar theorem is supposed to hold with regard to E,, e, viz.:
(SE, 0D + Se, 8d) ds = (SE, &'D" + Se’,6'd)ds” . . . (28),
from which, since [§ 7, eq. (6)] D" = m~1x 8D, and

ds')ds = T ds//T dS = mTy' = Uy == mT ="y’ Up’
E, = "'E/IY~'Us, E=xE/TXUs . . . . . (29),

and similarly for e, €',

31. We must distinguish carefully between the independent variables of an element
of matter which are given in the two lists (25) and (26) of § 27 and the independent
variables of the system in general. These last consist only of

0,p,d, D . . . . . . . . . . (30),

for every element of matter, for when these last and their time-rates of variation are
assigned for all space, all the other quantities are determined. [It is not quite correct
to talk of D as an independent variable on account of the equations of condition (7) of
§24] |

To enable us to develop the consequences of these fundamental assumptions, a
digression on dynamics and thermodynamics must be made.
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B. Preliminary Dynamical and Thermodynamical Considerations.
Ba. The < Modified Kinetic” Energy and the “ Free” Energy.

32. Tt is not to be supposed that the coordinates we have assumed are sufficient to
fix the position of all matter in space. The mathematical machinery we use cannot
be supposed sufficiently fine to trace the motion of molecules. Such coordinates as
would be required for that purpose are “ignored.” Now (LarMor, ‘ Proc. London
Math. Soc.,” vol. 15, 1884, p. 173) in order that the principle expressed in eq. (1) of
§ 18, above, may be true under these circumstances, L must be, not the true
Lagrangian function, but what Rourn (‘ Elem. Rig. Dyn.,” 4th ed., § 420) has called
a modified Lagrangian function. And that our principle may be true the particular
type of modification is assigned, i.e., the ignored coordinates are those whose momenta
appear explicitly. And a further restriction is necessary (LARMOR, as above), viz,
that the ignored coordinates must only appear through their momenta. That is, the
ignored coordinates must be what Professor J. J. Tromson (¢ Applications,” 1st ed.,
§ 7) has called kinosthenic or speed coordinates. This last restriction, however, is
not absolutely necessary if we take L to be the average value of the modified
Lagrangian function for a small time, sufficiently large to allow the molecules to go
through all their types of motion many times.

338. Whether these restrictions be imposed or not we have the following relation :—

A=3qoLfeg—L . . . . . . . . . (1),

where A is the whole energy of the motion due to a modified function L, and ¢ is a
coordinate whose velocity appears explicity. (Notice that 2f A were supposed

expressed, not as a function of the ¢’s, but as a function of the 0L/d¢’s, it would be the
reciprocal function of L with regard to the ¢’s [Rourm’s ¢ Elem. Rig. Dyn.,’ 4th ed.,
§ 410.] Tt is not this reciprocal function only, because, for our purposes, it is more
convenient to assume it an explicit function of the same quantities as L).  To prove
this, let* ¢, ® be a coordinate, whose mementum appears, and its momentum respec-
tively, and let L, be the Lagrangian function of which L is the modified form.
Thus

2 9L/og ~ L= 3q 0Lgfoq — (T — 3¢)

[Rourn’s “ El Rig. Dyn., 4th ed., §§ 410, 420].

=3 (q 8Lfoq + ¢ OLfod) — T [ibid.] v
23 — (¥ —B). [T = kinetic energy, B = potential energy. ]

* There is no danger of confusion of these meanings of ¢, ® with the stress meanings these symbols
bear through the rest of this paper.
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Equation (1) can be put in a more convenient form for our purpose. We have

4 L AL 4oL « (3L oL
81;:072259-‘89'-!-2(@—@8§>89+-5<a¢8¢+d¢8¢->

With the restrictions just mentioned, we have 0L/d¢ = 0 and 6® = 0. Hence

d oL oL 4oL B
SchﬁEa—é SQ+2<§;_JMZ§> q L @)
d . oL d oL S

_—_2;{23,(8%1,895,)—{-2(%'—&;@)8(1 _JI

where 2T (89, 8q;...) is to be defined as the function which appears under the
operator dfdt when 8L is expressed as the sum of two quantities, one of which 1s a
linear function of the variations of the retained coordinates, and the other is the rate
of wariation of « similar function. We now have

A=28(Quqy. V=L . . . . . .. 3

We shall show hdw, for our particular system, & (g, . . .) can be expressed in the
form |

Lo gy )=|[[tas+[[vas .. ..,

where t, t, are functions of the same wndependent variables as 1, I,

It is convenient to call (qa .. .) the whole modified kinetic energy, and t, t, the
modified kinetic energies per unit volume and surface respectively. And, similarly
putting

M=92t—1, N=2t—14 . . . . . . . . (5),

we shall call X and ), the free energy™ per unit volume and surface respectively. We
thus have A

a=([pas+(as 000000 ()

We shall then assume that the energy in any finite region is the integral on the
right of this equation for that region. The surface integral in this case, of course,
only applies to surfaces of discontinuity (as to physical quantities) in this region, and
not to the true boundary of the region.

* This term is adopted as a translation of Herymornz's ‘freie Bnergie’ (‘Wiss. Abh.,” IL., 959). It is

not, of course, the same as the intrinsic energy which we are about to determine by a method analogous
to HenMuonrz's.

MDCCCXCIL— A, 4 x
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Bb. The Entropy.
34. If Q be the external force of type ¢, we have
dA = 3 Qdqg,

where dq is the actual increment in ¢ during the element of time. This can, of
course, be proved directly from eq. (2). It must now be remembered that all the
above variations are only true if we suppose the temperature of every element of
matter kept constant. In other words, the last equation must, when we do not make
this restriction, be replaced by

dA —dA=3%Qdg . . . . . . . . . (7)
where d,A stands for that part of the increment in A which is due to increment in
temperature in all elements of matter during the element of time. ILet now E be the
intrinsic energy (including under this term the ordinary kinetic energy of matter as

well as all other forms of energy) of all the matter in space. Thus by the fundamental
property of entropy (Tarr’s ¢ Heat,” §§377, 378),

a8 =3 Qdg +|[[odfds + ([oaras . . . IR OF

whence, from the last equation,
ol<—- E+ A+ ([[0rds + ”e/;ozs> = dy + [[[faods + [[rasas . ()
\, will be seen later on to be independent of ®. Hence

dus = ([ (2—;” 0 — Sd@gvx) ds + ([ 2 aods

= [ @% + sv@,vx> aods + | @;‘ —~ [SUy@V)\]“b) d0ds,
[by putting de = vdd, and applying § 5, eq. (4)]. Thus eq. (9) becomes
(=Bt [y + (o) )
= {[[ <f+ >4 sv@w> a6ds + (| (ﬁ +o [SUpevx]a+b> a0ds |

Since the left of this equation is a perfect differential, so is the right. Hence we
see that
J 4+ or00 4 SVeVN and  f, + ON,/00 — [SUreVA ] 4y
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must be functions of @ only. And further, by including these functions in — ol/00
and — 0l,/00 respectively—a proceeding that will not affect the equations of motion
deduced from the form of L—we see that each of these quantities may be put equal

to zero. With this extended meaning of L, then
J==0N00 —8V, YN, . . . . . . . oL (11),
Ji= —oNfo0 + [SUveVA], .y . . . . . . . (12).

We now see also from eq. (10) that

B=a+ (([gds + [[oras .. . ... s,

or
E=([[eds + [[eas. . . . .. ... (),
where
e= N4 Of =\ — 00No0 — OSVeVN. . . . . . . . (15),
e =\ + Of, = \, — 000 + O[SUVA],s . . . . (16),

so that e, ¢, may be called the intrinsic energy per unit volume and surface respec
tively.

Be. Frictional Forces, Conduction of Heat, and Dissipation of Energy.
35. It has already [§ 27 (26)] been mentioned that @ is a function of
g,0; v, w; KE,H . . . . . . . . . (17)

Of these ¥ and K are of the nature of velocities, and from the equation 47G = VVH
the same may be said of H. Let us, then, briefly speak of them as ““the velocities ”
involved in . Similarly in the general theory where «, is not assumed zero, it also
will involve certain variables for like reasons called velocities. Let & &, be the
functions which are reciprocal (Rourr’s ‘El Rig. Dyn., 4th ed., § 410) with regard
to ® and the velocities, to the functions x and x,. Thus

x4 £= — 80,Ve — SK Ve — SHyVe — SV, del* ... . . (18),

* This seems a good opportunity to place on record a suggestion. There are some obvious objections
to the method used in the present and former papers of indicating the independent variable of
differentiation of a V or (I by an affix. It is somewhat hard to distinguish between C and ¢ in the

4 X 2
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and a similar equation would hold with regard to x, -+ &, which, however, requires
definite information as to the velocities involved in @, & is supposed (Rourh, ¢bid.)
expressed as a function, not of the variables (17), but of

6, @Vw 5 ’\I,, \P(Ix 5 KVLYJ, HVOG . . . . . PN (19).

It is best at first to regard @ as a function, not of X, but of € and ¢ [§ 24, eq. (10)].
When later we make the assumption that, so far as it depends on these last two, it is
a function of their difference () only, it will only have to be noticed that

CV&’) == KVQ'} IND e GV:E . . . B . . s . . (20).
Note that this gives
SKyVa = SCVa -+ Se, Ve . . . . . . . . (21),

which shows [eq. (18)] that the statement that £ is the reciprocal of @ with regard to
® and the velocities is still true.

Similarly, if it were assumed, as on a future occasion it will be assumed, that s
was a function of

05 [p e Wu o3 TSULK . . . . . . . . (22),

it would be best first to regard it as a function of

9; Pa/, Pb/: \ym \yb; Cm Cb: Cu Gy L (23)s

and later make the necessary restrictions.

36. We shall now suppose that the symbols Q, F, F,, ®, E, E;, ¢, e, stand for
those parts only of the external forces of the various types, which are owing to
friction and the like. To determine their values we shall use the principle®

present paper and ¥ and - in the former paper [paragraph following eq. 40)] when used as affixes.
There are objections from the printer’s and proof-reader’s point of view when the affix is anything other
than a mere letter. For instance, ¢(I in the present case, and, still more, ;/V in eq. (2), § 44, below, are
objectionable on these grounds. Is it nof, then, desirable to have, at any rate, an alternative notation ?
As an alternative to ,V, let me here suggest any one of the following: V|¢| |Ve| [Ve] V|e Vo
Ve Vo| Voj. Of these I should personally be inclined to favour [Ve] or Vo ; , the latter rather than
the former. For instance, in this notation, eq. (18) would become

2+ = —80VO;a —~ SKVK ;2 — SHVH ;2 —S\if{,‘(I\I};w‘g,
which, I" think, shows that the notation is sufficiently striking, while it has the advantage of great
simplicity.
* T have not been able to reduce this to simpler form or to substitute a simpler principle leading to

the same results. I merely wished to make all the phenomena of the kind now being considered depend
cn some single scalar function X, much as the reversible phenomena depend on the single scalar
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HH (8 +agg 80>+f'80}dg |

+”{ <8x3+a%% 0>+j;8«9}ds+2Q8°g=o. Coe. (24),

where now 8 only implies such variations as are the consequences of varying the

velocities of the dynamical system and the temperature, and where of course 3Q 8¢ is
given in our case by

Q87 = [[[{— S8y ds' + (SESC + Sedc) ds}

+¢‘H{—SFsol/;'ols’+(SE38C+Se38c)ds} Co L (25).

This last equation would have to be modified if we contemplated finite sliding of one
surface over another. In this paper, as already stated, we simplify by supposing this
never to take place (except in § 64 below)

Equation (24) is more general than in this paper is required. Throughout this
paper x,, and therefore &, will be assumed zero.

37. The truth of the principle can be verified (as, admitting the restrictions just
mentioned, will be shown directly) by proving that its consequences are in complete
harmony with three recognised principles : —(1) that frictional forces can be explained
by what Lord Ravieicu (‘Sound,” 1st ed., vol. I, § 81) calls a dissipation function ;
(2) that the heat which is created by the destruction of energy in other forms,
appears, in the first instance, at the elements of matter where the destruction takes
place; (3) the fundamental principle of conduction of heat, that the rate of flow of
heat out of any region across the element o3’ of its boundary = S d3"y’®" where v’ is
a self-conjugate linear vector function, which is itself a function of the state of the
medium at the point.

38. To show the truth of these statements in the limited circumstances mentioned,
viz., when #, is zero and there is no slipping, notice first what the effects of varying
C and ¢ only are. A variation in C will cause a variation in H, since 470 = VVH
and [VUvH],,, = 0. The device used in the calculus of variations to take account

function L. 'When there are heat sources not included in our system (L and X) we ought to put

f—hand f> — by instead of fand £, in eq. (24), k0 and %0 being the rate of supply of external heat per
unit volume and surface respectively. The form of eq. (24) would perhaps be made more instructive by

grouping together the terms
' jﬂ fo0ds + ﬂ fs 80 ds + =Q 8.

If H be the rate of absorption of heat” by a body (ds or ds) of the system, this expression
transforms into = (H 60/0 + Qéq).



710 MR. A. McAULAY ON THE MATHEMATICAL

of such equations of condition is well known. In the present case it takes the
following form : to the left of equation (24) add

— m 8a (8¢ — VV 8H/4x) ds + (4m)~" || Sa, dx 57

where a, a, are vectors; 8C and 6 H may then be regarded as independent. It is to
be noted that there is but one a, for an element of the bounding surface, 7.e., there is
not one for each region bounded. In our notation this may be expressed by saying
that [a,], = [a,]s.

Now, by eq. (4), § 5, above,

msa,vs:{dg+HSa,scz28H=H[saHVa,dg+HS(as-;-a,)dESH.

Hence, since the part contributed to the left of eq. (24) by 8H is — [[[ S sHyzVa ds,
we get, by equating to zero the coefficient of the arbitrary vector SH,

drgVe = VVa=5b . . . . . . . . . (26)

[VUwlws =0 . . . . . . . . . (27),

a, disappearing, since [a,], = [a, s

Again, before considering what is contributed to the left of eq. (24) by &C, it must
be remembered that 8C is not quite arbitrary, by reason of the equations of condition
SVC = 0, [SUwC],,, = 0. This is taken account of by adding to the left of *
eq. (24)

[([¥svecds+ ([vsasse = — [([ 55vY ds + [ (Y + V) S az 50

* Tt may be objected that these equations of condition have already been taken account of in the
treatment accorded to the more general equations of 47C = VVH, [VUvH],,; = 0, and, therefore, it is
erroneous to take account of them again. The answer to this is that it is not necessary to do this, but, on
the other hand, it is not erroneous. "We must expect as the result that the Y’s will be, in a mathematical
sense, redundant. That this actually is the case will appear in § 65 below. The reason for introducing
them is to obtain the equations of the field in as familiar a form as possible, and to show the mathe-
matical dependence of the existence of a potential on the equations SVC = 0, [SUwC],.; = 0. The
process may be paralleled in the subject of the Calculus of Variations, U, V, W being three functions
of ,y,..., ox &y, ..., linear in the latter group, let it be required to satisfy the equation U =0
subject to the equations of condition V=0, W = 0. The recognised method is to use the single
equation U + AV + BW = 0 instead of the three, A and B being functions of «, y, . . . determinable
by the problem in hand. It would not be erroneous to add to the left of the last equation CW, where
C was a function of the same kind as A and B. One of the two, B or C, would be mathematically
redundait, but it might be convenient to introduce both and give arbitrarily, later on, some method of

assigning a definite meaning to each.
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leq. (4), § 5], where Y, Y, are scalars, and, as with a,, [Y,], =[Y,], Equating now
to zero the coefficients of 8C, S¢, we get

E=Ve4+a+VY, e= Ve . . ... (28),
E,=—[YUrlys, &=0. . . . . . . . (29).

It should be noticed that b, defined by eq. (26), satisfies both the conditions ot
incompressibility
SVb =0, [SUwbl,,;=0. . . . . . . . (30)

The first condition is obvious from the equation b= VVa. The second is easily
deduced from the equation [VUra],,, = 0. For this last asserts that the component
of a parallel to the surface is the same for both regions bounded. Thus the line
integral [ S dpa, which, by eq. (8), § 5, = [[Sb d3, taken over any closed curve on the
surface, is the same for both regions. It follows that [S dSb],,, = 0. We naturally
assume that a is an intensity and b a flux. Hence, by § 8,

Vv =V, [VU/al,=0 . . . . . . . (31)
SVD =0 , [SUWb ], =0 . . . . . . . (32)

39. Next suppose that the only variation implied in equation (24) is in p’, and,
therefore, in w. Thus

j ]. [ 08 (x/0) ds = — “j’SS\iIC{',(ngdg [eq. (18) of former paper]
= — 3 [[[ssdrx ey s,

where @ is defined by saying that
e=2dz . . . . . . . . . . (33),

and that @ is a function of Class L of §9 above.* Now since [former paper, eq. (39)]
¥ = x'x, we have ) ‘ )
O¥ = 8x". x + X'Ox

* What immediately follows is a particular case of a theorem required more than once below. Let
Q, x and o be as usual in this paper and let Qw = — 28Sws. Then

Sx'Q¢QLds = =SpQ'¢ds.
More generally, if (w, »') be any function of two vectors w, «' linear in each

(QE, xQ0) ds = =2 (B, Q') . ds.
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and, therefore, .
SSWL I T = S8yx Iy TIY T 4 Sy SxixT@X "L
= 288y @'y "1 [ibid., eq. (6)]

and Syw = — SoV. 8p' [ibid., eq. (25)]. Hence [bid., eq. (7)]

([[08 aioyds = — [[fsairor w05

= — [ j S8p,/®'V,'ds’ [ibid., eq. (27)]

= — [[sspaas’ + ([[s8pa,v,ds [eq. (4), § 5, above]
Hence, from equations (24) (25), above,
P=on , B=—[0U ]y, . . . . . . . (34),
showing [ibid., p. 107] that the presence in z of ¥ leads to a stress ®.

40. Now, suppose the only variation of eq. (24) is that of temperature. In this
case

<3 +a(5/‘9)aa>__e 0 * 50 — 850,72

- wgﬁse-svsa Vi,

since [Roure’s ‘ El. Rig. Dyn.,” 4th ed., § 410], 9 (x + £€)/00 = 0. Also [§ 5, eq. (4)

above]

— [[[sv 80,72 ds = — [[ 368 dsove + [[[ 368,72 a5

Hence, the variation of 6 leads to
f=@4+E0—8VVe . . . . L (35),
fr=18U0Veliss .« . . . . . . . . . (36)

41. The first of the three statements in § 37 is now obvious, as far as ¢ is con-
cerned. With regard to € it must be remembered that € cannot be made to vary
without varying H. Now [Ravrerer’s ‘ Sound,’ 1st ed., I, § 81] in order that frictional
forces may be explained by a dissipation function X, in Lord RAvrLEIGHS sense, the

frictional force Q corresponding to an independent coordinate ¢ should be = — 0X/dq.

For our purposes this is put more conveniently by saying that 3Q 8¢= — 3 8, X,
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where the 2 implies that any assigred group of independent velocities, and no others,

are varied, and where 8,X is the increment in X due to the particular variation Sq
Now, on account of the conditions,

4wC = VVH, [Vd3H],,; = 0, SVC = 0, [Sd=C].,; = 0,

it is necessary that we consider the whole group of velocities, 8C, throughout space
together. It is, then, as far as € is concerned, only necessary to prove that

[ f [SE 8¢ ds + [ [ SE, 5C ds = [ [ [ (S8C,V + SSHuVa) ds,

the integrals extending throughout space. (As to the sign of these terms, it must
be remembered that the force corresponding to C is not E, but — E). This is proved
quite easily® by means of eq. (4) § 5.

Similarly, with regard to ¥, it is only necessary to prove that

— [[[s 8p a5 — [[sF, 8 as = ([ [ 95Tt ds,

and this is obvious from the mode in which equations (33) (34) were established.

42. To prove the second and third statements, let for any finite region [f, denote an
integration taken over the true boundary of that region, and [f, an integral taken over
both sides of any surface of discontinuity, as to physical quantities in the region, so

that ”=“b+“[z’ N 14

Then, if we can prove that for any finite region,

(Rate of increase of heat - rate of doing work of frictional forces)

= —[[ (842 (0.ve + VaHjiz — YO) + Spads’] .. (38),

it will follow that the energy supply required to account for (1) the increment of
heat, (2) the work (negative) done by the frictional forces, consists of three parts, (1)

* It should, perhaps, be noticed that ¢C and ¢H are now not perfectly arbitrary. We may assume
that
SyéC =0, 47 ¢éC = Vv éH,

and from the equations [VUva],+; =0, [VUyH],. ;=0

[SaUp dH],4s = 0.
MDCCCXCII.—A. 4 v
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the work done on the boundary by the viscosity stress, (2) the work done on the
boundary by the frictional electric forces, (3) a flux — 0,V of energy at every point
of space. This may be put in, perhaps, the more familiar form :—the increment of
heat in the region consists of three parts, (1) the work done against the frictional
forces throughout the region, (2) the work done by the frictional forces (viscosity and
electric) on the boundary, and (8) the surface integral taken inwards at the boundary
of a flux — 0,Ve. Stated in this way we see that equation (38) is equivalent to
saying that the conduction of heat is due to a flux of heat — 0,V at every point of
space, and that the frictional forces are sources of heat.* These are statements (2)
and (3) of §37 (except that here we have — 6,Vz, and there we have a more definite
form for flux of heat due to conduction.)
To prove eq. (38), note that the expression on the left

:“T{(Qf‘l‘ SEC + Sec) ds — SFP' dg’} + _“Z{(H.fs"‘- SEC 4+ Sesc) ds — SFs/.J’ClSI}
= ”f {le 4+ &€ — 08SVeVx -+ SC (Ve + a + VY) + Se,Va]ds — Sf')/q)llv/l ds')
+ [[ (805 (090 + VaB/am — YO) + S0 dx'}.t

Now put [f; =[] — [[; [equation (37)], and transform the integral [[ by means of
equation (4) §5 above into a volume integral. In doing this note that by reversing
the process of §39 we get

— [[[spovias + [[speas =[] sizaads.

* Tt is possible at this stage that two objections may be taken to this reasoning. First it may be said
that there ought to be no terms in the surface integral leading to the result that the frictional electric
forces do work on the boundary. That this is not a sound objection will come out more clearly below,
when the effect of YC will be found to in no way alter the ordinary views of the transference of electric
energy through the field, and the effect of VaH will be only to modify them in a way which would
naturally be anticipated from the new hypothesis that H has some influence on the frictional forces of the
field. Secondly, it may be said that besides the three terms mentioned in the text as contributing to rate
of increase of heat, there should be a fourth due to such causes as the Tuomson and Prrrizg effects.
T'his statement is, however, undoubtedly wrong, as will appear more clearly when we come to the con-
sideration of these effects. The explanation is that these effects are explained by terms in f. Hence,
in equation (38) they are tncluded on the left. 1f this is not considered convincing, let me call attention
to equation (25), § 49 below, which asserts that the rate of increase of intrinsic energy (including that of
the Tromson effect, &e.), in any space = rate of doing work thronghout the vegion of the external forces
which are not due to friction + the rate of heat supply from external sources situated in the region + such
a surface integral as now is under consideration (i.e., confined to the true boundary).

+ We have here for the sake of the next transformation added the term HdeEa,H/élw, since from
the equations [VUvH], 3 =0, [VUva],y; = 0, it follows that [SUvaH] ., = 0.
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Thus we get for the expression on the left of eq. (38)

[|[t2 + & + 8072 + 80eve + Se,vao + SHVe + SWLiTal} ds

~ [[ 1802 (0ver + VaB/4w — YC) + Sp’ d'}

of which the volume integral is zero [equations (18), (21)], and the surface integral is
the expression on the right of equation (38).

To get the ordinary expression for the flux of heat due to conduction we have merely
to suppose x to contain the term — S@y®/20, where vy is a self-conjugate linear vector
function of Class I., of §9 above. The heat flux referred to the standard position of
matter due to this term

= 0,V (SOy0/20) = — O,

and, therefore, by Prop. V1., §10, the actual flux of heat is — v'®&".

43. It is known (Tarr's ¢ Heat, 1st ed., §412) that if 6, be the lowest available
temperature, 6, I is the rate of dissipation or degradation of energy in Sir WiLLiam
TroMsoN’s sense. Now by equations (35), (36),

P=([[@+eyods . . . ... (39)

so that (@ + £) 6,/0 may be called the rate of dissipation of energy per unit volume.
There seems very good reason then to call X the dissipation function. It only differs
from Lord RavrLEeieH'S function in the terms that lead to the conduction of heat.

If, as will usually be the case,  is quadratic in ® and the velocities, § = @, and the
rate of dissipation per unit of volume will be 226,/0. For instance, the rate of dissipa-
tion per unit volume of the standard position due to conduction = — S®y®0,/0?, and,
therefore, per unit volume of the present position it is — S@"y'®’6,/¢>*

III. ESTABLISHMENT OF (GENERAL REsuLTs.
A. Value of 8L for a Finite portion of Maitter.

44. Asalready remarked (§ 34) the 8 in equation (1) § 13 implies variation in every-
thing but the temperature. This will be assumed for the present. Thus 8 depends
[§ 27 (25)] on the variations of

P, p,¥;d,D,C H

* 1 suppose this result has been noticed before, though I do not know by whom.

4 v 2
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So faras it depends on p’, f will be supposed only to contain the term — D, W, where
D, is the density of matter in the standard position, and W an ordinary potential
(quite independent, however, of electromagnetic phenomena). Of course, so far as

it depends on p’, I is supposed only to contain the term — D,,0%/2. Thus 8] consists of
the following parts :—

—S8&VI=D,SHVW . . . . . . .1,
— 88p,Vl=—D,Sp' 8 = —d(D,Sp'8)/dt + D,Sp' 8 . . (2),
=S8V . . . (8
— B8NV .. ),
— 880Vl = — 88DVl = — dSVI8D/dt + 88DdViyde . . . (5),
—SOHgVI=—SBSH/dw . . . . . . . . . . . . . (6),
—S8WAL =mS 8, V', . . . . L (7),

where (I stands, as throughout the present paper it will stand, for ,(I, and where ¢’
is defined by saying that

qS:-—2(IZ(8),
and that ¢ is of Class L. in §9 above, The proof of equation (7) is exactly parallel

to the treatment of ® in §39 above, and, therefore, need not be given here.
45. The part of 6L due to (7) is

[|[8809v a5 = — [[[s 809,77, s + [[8 8579 5
by eq. (4), § 5, above. The part* due to (6) is [§ 26, eq. (19)]
— (4m) 1 [[[ svasHds = — (4m) ([[ sAv 88 ds — (4m)~ [ s s ds.

When considering the whole of space this surface integral can be neglected, since
by eq. (15), § 25, [VdSH],,, = 0, and by eq. (20), § 26, [Vd=A],,, = 0. If, as for

* This transformation which assumes a fact still to be proved (viz., that B = VVA, [Vd=Al,,; = 0)
is given, not with the object of determining the equations of motion, in which process this fact will not
be assumed, but to find the rate of change of energy in an assigned space.
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the present we assume, we are considering that part of L contributed by a finite
portion of matter we must retain the part of the surface integral due to the true
boundary of the portion (ff; of § 42). Thus the part of 8L due to (6) is

— [[[sascas - (47)41[[68A3ch2
= — % ([[sasDds + ([[SAsDds — (1m) =1 [ SasHas,
Collecting terms we have for any finite portion of matter
8L.= — % [[[(DuSp' 8’ + 85D (oVi + 4)} ds

+ [[[ 880/ [Du (5 + VW) — mep, 7] — S 84V
+ 88D (deVijdt + A — yVI)} ds

+[[sspgds — (4m || sasHaz . . ..o (9)

B. The Free Energy and Rate of Increase of Intrinsic Energy for any Finite portion
of Maitter.

46. We now see from the p.rincip]e enunciated in § 83, above, that the modified
kinetic energy for all space T is given by

23, = — [([(Dup® + SC (91 + A)} ds.

Now

44 j [ SCAds = ::SAVHdg [§ 25, eq. (18)]

= [[[srvAds + HSHAd}S [§ 5, eq. (4)]

— ([[sBHAs [§ 26, eq. (19)],

the surface integral vanishing by § 25, eq. (15) and § 26, eq. (20). Thus
23, = — [[[{Dup + SCVI+SBH/4n} ds = [[fe+nas . . qo),

where \ is in value, but not in form (since we suppose it expressed in terms of the
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same independent variables as 1) equal to the function which is reciprocal to ¢ with

regard to f;’, Cand H. These three vectors may be [§ 85 ] called velocities, and thus
\ is in value the reciprocal of I with regard to all the velocities involved in the latter.
Adopting now the notation of §33 and its assumpteon (end of § 83), we have

L+ N=2t= — (D,p?+ SCVI + SBH/4m) . . . . . (11)

M:ts:O...,........(lZ).

That /, the Lagrangian function (per unit volume), and X, the free energy, should be
reciprocal functions (in value only) with regard to the velocities they contain, is
in accord with the fact (but not deducible from it) that a similar statement is true
for an ordinary dynamical system [§ 83, eq. (1) above].

Let now A stand for the part of the free energy due to a finite portion of matter.

Required A. To find this, first obtain the rate of increase of A that would occur if
all the circumstances were such as actually occur, except that the temperature of each
element of matter is kept constant, and then add the part due to the rate of variation
of temperature. To get the first of these we have at first to find the corresponding

part of L by changing all the &8s ot eq. (9) into differentiations with regard to the

time. Then we have to subtract the result from A -+ L, which is given by eq. (11).
Thus we get

A= ([[(9arj00 — 86,91 ds

~ ({36 [ (5" + V' W) — 10y V]~ SeVi- 8C (deVI/dt 4 & — VD) b (13).

— ([ sp'¢' a5’ — (4m)= ”bSAH ds

J

It should be shown perhaps how the last integral appears. It comes from the term
— SBH/4n in { -+ A and from the two terms

d
dt

1

dor

[[[saspas— [[ sasmas

in 8L. These three terms contribute to A
d 1 .
||| a0 — sBE/Am) ds + | [, s s,

But, since, 47wC = VVH, 4#SAC — SBH = SAAH, so that the volume integral can be
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transformed into a surface integral. Transforming and noticing that the part of the
surface integral [[, is zero, the last term in equation (13) is obtained.

We may now obtain E. To do this, combine the first integral of equation (18) with
d ([ 0f ds + [] 0f, ds)/dt.  We thus get by equations (11), (12) of § 84, and equation
(4,85

[[] 67as + [[oF.as — Hbés S, VA,
Thus, from eq. (13), § 34,
E=([[07ds + ([ gf.ds — [[[t8p' [Du (5 + VW) — mepv]

— 8¢Vl + SC(dgVljdt + A — VD ds & . (14).

- ” Sp'¢’ dz’ — H Sds (VAH/4w + 6,V))

C. The Equations of Motion.

47. The symbols E, F, ®, &e., will now again be supposed to stand for the whole
external forces including those due to friction. The parts contributed by all of these
except ® to 3Q 8¢ can be written down at once. By the former paper p. 107 the
force per unit volume (of present position of matter) due to ® is ®'A". @ is assumed
to be self-conjugate® and of Class I of § 9 above. Thus @’ is also self-conjugate, and
therefore there is, due to it, no couple per unit volume. The force per unit surface at
a surface of discontinuity is —[®Uv], ;. Thus the part contributed to =Q d¢
by @ is

[[s8p0as — [[[s8p@/v, ds.

Hence collecting all the terms

3Q8g = — [[[ 88" (@ + @v))ds — [[ 8 8p' (B, a5 — @ ozzﬂ

’ m (Sood + SEED) &5 + f f (Se, 8d + SE, 8D) ds j -

48. To obtain the equations of motion from these results, it must be remembered
(§ 88) that while §p’ and 8d are quite arbitrary, this is not the case with 3D and SH.
We adopt the same method here as in § 88, <.e., we add to the 8L for all space

* Tt is clear by the work in the former paper (pp. 106 to 108) that there is no mecessity to make
this simplification. On the other hand nothing seems gained by not making it.
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— [[[48v D ds — ([48 dx 5D — [[[SA (8¢ — V8H/4m) ds + (4m)~ [[sa, a5 om,

where
[Yele = [v]e  [AJe =[As

and where y, y, are scalars and A, A, vectors; 8D and 8H may then both be regarded
as arbitrary. The expression to be added to 8L may, by equation (4) § 5, be written :—

_%msmn 8 + [[[ (3 8D (A + Vy) + 8 SHVA/4n} ds

— [ty +y)soDss —SSH(A+AYdS/4m} . . . (10).

Equating now to zero, the coefficient of 8H in the extended SL, we get,
B = VVA, [V dZA](,/.*_& - 0)

the A, disappearing on account of the relation [A,], = [A,];, 'This is the promised
proof of equations (19) (20) of §26, and, therefore, also of equation (18) of the
same article.

49. oL and Q) oq are, [(9), (15), (16)], now insuch a form that the consequences of
equation (1), § 13, are seen by inspection. They give (writing IV, for D, /m, so that
D', is the density of matter in the present position)

Dp'==D,VYW (¢ + @)V, +F. . . . . . (17),
0=—[(¢'+ &)Ul s+F . . . . . . . (18),
e=gVl . . . . . (1Y),
E=yVi—dVifdi—A—vy . . . . . . . . (20),
e=0 . . . . .. (2D,
Bo=[yUnliss - « « « o o . (22)

Let, for a finite region

P == rate of doing work of external forces }

+ rate of supply of heat from external sources (23),
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so that P may be called the “power” of the external forces and heat sources. P may
be divided into P, the part due to the frictional forces, 7.c., the expression on the
left of eq. (88) § 42, and P, the power of the really external forces and sources, .e.,
forces and sources included neither in [ nor @ From the equations of motion just
obtained, and from eq. (14) § 46 above,

B =P+ [[[sovyds — [ [dyscczz — f [s6 Spgds’ + Sas (VAH/4r + VM),
| Now, SCVy = SV(Cy), since SVC = 0. Hence [eq. (4),§5]

HfSCVde -— H,zySCcZS‘ — [ !'ysgdg - f [ 2/SCds, = j’ [;,ySColE. ,
Hence ‘ ‘

B=P— [[,{Sp¢ds +8d5(—yC + VAH/4m + 6,90)] . . (24)

Putting now P = P, + P,and substituting the expression on the right of eq. (38),
§ 42 for P, we get

B =P, — [[1(8p' (¢ + ®) 4%’ + SaS[ — (y + V)€ + V(& + a) Har
+ (0VN + 0,V2)]} . S (2),

where now @, has been put for the @ of eq. (38), § 42, to distinguish it from the &’ of
equations (26), (27) below.
50. In §§ 38, 39, it will be remembered that E, F, &c., stood for those parts only of
the external forces which were due to X. Let, now, these symbols stand for those
-parts only of the external forces which are not tnwvolved in X. Thus in equation (20)
we must change E into E+ ¢V 4 a 4+ VY [eq. (28), § 38], and similatly for the
rest of the equations of motion. We thus get

Dp=—=DYWH(F+& +&)V +F . . . . . . . (26).
0= —[(¢ +® +)Usl,, +F . . . . . . . . . (27
e=m—ym...b, ..........@&
E = yVI — (dVldt + (Vo) — (dA/dt +a) —V(y+ Y) . . (29).
e =0 . . . . . . L (B0)
E=[(y+V)Urlss - -« o o e (B

MDCCCXCIL ~—A. 4 z
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We collect here, partly for reference, partly to show more clearly the actual stage
we have now reached, the other chief equations of the field.

b=—20l . . ... (32)
dr= 2 . . . . . . . . . . . . (33)
47Vl = B = VVA, [VUsA],.,, = o} (50),
SVB=0, [SUyBl.,=0
drgVz=1b="VVa, [VUwl,,,=0] 35).

SVb=10, [SUrbl,,=0

47C = VVH, [VU/H],,.,= 0
SVC = 0, [SUWC],,, =0 Co ... (36).
SVD == 0, [SUVD:la+b =0

D=d+k C=c+XK
Atk C=ct ki (37).
c=d, K=k C=D
¢ =& + VV,Vdp, = odjot ++ VV'Vd'p — p'Sva’ (39)
¢ =D + VvV VD', == oD'/ot + VV'VD'p’

[The last set has not yet been proved, as it is more convenient to discuss it along
with the detailed results, though clearly itself a general result.] Roughly speaking,
of these equations [(25) to (38)], it may be said that (36) and (37) contain the
assumptions of the present theory, and the rest the consequences of those assump-
tions.

Two remarks may be made here. It is clear that, since in the equations (25) to
(38), ¥y and Y occur only under the form y + Y, there is nothing by means of which
we could experimentally distinguish them. Putting, then,

y+Y=v. . . . . 0L (39),

we shall generally in the future speak only of v. It may be conveniently called the
potential, though, as we shall see later, this is not in accordance with MAXWELL'S
usage of the term ; and, what is perhaps of more importance, there is something
arbitrary about it apart from the arbitrary additive constant which every potential
involves.
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The second thing to notice is that the E of equation (29) is not what is usually
known as the electromotive force. The physical fact that is usually stated by saying
that E = RXK, must with the present notation be stated by saying that E = 0, since
— RK appears on the right of equation (29) as a part of the term — (Va. This, of
course, is due to the fact that E of equation (29) is physically defined as the part of
the electromotive force not depending on friction.

D. Change of Variables in I, A, and .

51. In what follows with reference to change of variables, we shall always speak as
if the change had reference only to /. Exactly similar reasdning applies to similar
changes of variables in any other function such as \, @, or a part only of any one of
these. There is, indeed, no reason why the function should be a scalar.

So far, [ has been assumed an explicit function of the list of variables (25), § 27.
These are by far the most convenient variables for most mathematical operations, and
we shall continue as often as otherwise so to regard . For many physical interpreta-
tions, however, it is necessary to regard /, or a part of it, expressed in terms of other
variables. Consider, for instance, air as a dielectric. This will be taken account of by
supposing / to contain a term quadratic in d. Suppose, now, we compress the air till
its density is (say) doubled. We know as a matter of experimental fact, that the
specific inductive capacity will not thereby be largely altered. This will mean, not
that the quadratic expression in d is but slightly altered in form, but that the equal
expression in d’ is thus slightly altered. Moreover, to express simply the fact of
electric and magnetic isotropy of fluids requires that the independent variables should
be the dashed letters. Let then ‘

lds =1ds =U'ds’ ov l=ml'=ml" . . . . . . (1),
where
l is an explicit function of 6, ® ; p/, ;;', v;d, D, C H
v ., y 0,0 ;p,p,¥;d, D, C, H;q . ().
I . ., 0,0"; p,p,¥; d, D, ¢, H

Defining X, \” similarly, it may be said here what will appear incidentally later,
that A and 7, and again, N and I”, are related to one another exactly as are X and /;

e [§46, eq. (11)]

(3))

U 4N = = Dyp? — 8 V'l — SH V'l
Z// + )\n —_ ]-)/ml;/g — SC//CV//ZN . SH:;HV/IZ/,

where ¢V’ is put for ¢V, &ec.
4 7z 2
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52. In (2) it is to be noticed that one more variable, viz., ¢, occurs in I’ than in
lor!”. The reason is obvious, but on account of the fact, it is easiest to arrive at
formulee transforming diffeventiations of 7 into the corresponding ones of I by first
considering the similar relations between 7 and .

Let o and 7 be taken as a typical independent variable intensity and flux respec-
tively. 1 is obtained from !” merely hy changing every o” and 7" into ¢~ o’q and
q~17'q respectively. (§7.)

By considering the increment in ! and {” due to an increment in a ¢ or 7, we at
once obtain

N =q Vg, VU=V g7 . o o L (4)
By a similar process it is easy to see that

g—lé ds = gg ds' = gg/ ds’
Vlds = ,Vl'ds = ;VI'ds
Vi =V (ml') =V (ml")
ar = v

~

~~
ot

~

<

53. We proceed to find the corresponding relations for the other variables. Letus
in / and I” vary ¥ and every o and 7, and ¢” and 7. Thus,
— 3880,V — 2867,V] — S8W{UI{ = &I = I"8m -+ mdl”
=1"0m + m { — Z88c",V"l" — 388", V""" — 88v{dl"{}.
Now (§7)

T =m" 1, o =y o

Hence

O = m~ (& — mTL8m. ) v + m 1.
80" = — Y71 o + ! S

Substituting these values and equating the vector coeflicients of the arbitrary
vectors 8o and 87, we obtain

=mp™ VU =yt VU0 o .o (6).
Nl=yVU =Vl ... ()

the last result in each of these being given by equation (4). These equations show
that VI, ,V'l, ,V"l” bear to one another exactly the same relations as r, 7/, 7/, which
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may be expressed by saying that they are fluxes.* Similarly, VI is an intensity.
This particular result can, of course, be proved by a simpler process than the above.
We now see that the meaning of B, obtained by defining B as a flux, = 4w VI, and
likewise the meaning of b’ is independent of the particular position of matter we take
as the standard. We also see similarly that the various terms in E, ¢, resulting
from regarding these vectors as intensities, and utilising equations (28), (29), § 50,
will be independent of the particular standard position chosen. And again, by
Prop. I1., § 8, we now see that equations (3) of last section must be true.
54. Putting now 8o = 0, 87 = 0, the equation &/ = {" &m + m &l" gives

— S8V = — mS §wLAL'L + (I + m™ E8Yr,V"1") om
+ (mESY~L 8y~ 1o VI — 38 Syr, V).
Now, by former paper, eq. (18),
6m = SLGLSYEPLPEs.
2 dm = S YLV PLSLL L,

or, by eq. (10) of former paper,
om = —mSNH~L . . . . . . . . . (8)

Hence

Similarly, since m? is the same function of W as m is of 4,
m
= -1
dm = 2SS‘I’§\I’{.........(9).

Also, for future use, note that since dm = — S Y{,Um{ = — SSV{Am{ these
equations give (former paper, p. 105),

JAm =my~!, Am=fme-t . . . . . . . (10)

* Tt is interesting to notice a particular result of this. Since © is an intensity, ¢VI is a flux. Hence
[Prop. IV., § 8] 8VeVI = mSV'eV'l. Dismissing the particular notation of this paper for the moment,
and putting @, y, z for the coordinates of p and A, u, » for those of p', this may be written

S A2 A YA AN AV WAL AN
SRR
L o, ay 0z ) o\ a,u ov

If we add [equation (5), §52, above] — m='0l/00 to the left of this equation and — 0/'/00 to the
right, we get a well-known theorem of Jacosr's. Comparing with the form of this theorem given in
TopmuntEr’s ¢ History of the Calculus of Variations,’ § 323, equation (2), his G, T, v, ¢, II are our
1, ml/, 0 (regarded as a function of p), 0 (vegarded as a function of p'), and m~! respectively. See also
TopuUNTER'S ‘ Functions of Larnace, Lamf, and Brsser,” § 298, equation (17), and the supplementary
volume of BooLr’s ¢ Differential Equations,” p. 216.
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T the equation for 81 put Spy~'o = — YIS0 and S,V = — SYSLV'V'; for
8m substitute from eq. (9); and for /", .V"l” and ,V"1", substitute in terms of /, ,VI and
VI Thus

— SOVl = — S S¥L{mAL"L 4 & (I + 287, Vi) w13,

— S WL VISHY ™ o — 28y~ VI
Now, let Q, v be two functions of Class I. of § 9, the first given by
Q= =20l + 2mdl" 4 ( + =3,V w=t . . . . . (11),

from which [eq. (9) § 9, eq. (32) § 50, and Prop. IL. § 8]

O =¢ 4 2oxA" + U +38VT . . . . 0 L (12).
Let v be given by ’
vo = 3 (S Vi~ — ViISoy~). . . . . . . (13),
from which are easily deduced
vo =38 Vie— VISde) . . . . . . . (14),
Vo = ¢ (qug) ¢ = 3 ("8 Ve — V'U'Sc"w). . . . (15).

From the last value for 8 we now have

S8Vl = 28 SYluil,

" S SPLOYL = 8 SPLvl.
Hence (former paper, p. 105) the pure part of Q¢ = ditto vy, i.c.,

O = v + mVy (),

where 7 is a vector to be determined. Hence

Qo =vo +mVypple . . . . . . . (16)
Therefore

Qo=vo+xVnqleg . . . . . . . . (A7),
and

QYo=vo+yVyo . . . . . . . . . (18)

From the last equation and the fact that VZQ"¢ = 0, it is easy to deduce that

n =+ SOV (VU VUYL L (19),
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and by taking the pure parf of both sides of eq. (17) we get
2000 =3V (T0,Vl — 0, V) + oSS (¢ VI — ¢ V') + xVnqg'oq + ¢Vx'wy. ¢,
whence, putting

[¢]= —2xMl"y =—2xAlY . . . . . . . (20),
we have from eq. (12)

g’ = 2[¢] — (20 + SS (ZVI + V) + SV ( )V — o' () V) (
+ XVt ( )g+oVX' ( ).l

Note that the terms here depending on 5 may be put in the form
xVag ' ( )g+¢VX'( gt =gegt ()7t - - (22),
where = is the self-conjugate linear vector function given by

m=yVn( )+ VY( )y o (23)

For purposes of physical interpretation it is often legitimate to assume the present
and standard positions to coincide. In this case ¢ =1, x = x’ =1, so that

2¢' = 2[¢] — {20+ SS(r,VI+ o VI)} + SV {7 ( )Vi—0o( )V} (24),
and if, further, 7 is a homogeneous quadratic function of the ¢’s and 7’s,
2¢' = 2[4+ 3V {r( WVi—o( )V . . . . . (25)

55. For future use we will make two deductions from these results. TFirst suppose

that
=14+ m2rK, " d? — pH?8x) . . . . . . (26),

where K, p, are absolute constant scalars —the specific inductive capacity and magnetic
permeability of a vacuum, and where ;is expressed in terms of the undashed letters.
Thus it is only in the part of [ independent of 7, that the change of variables is made.
In this part there is one 7', viz, 4, and one ¢”, viz., H'; and » = 0. Hence

do=—2m Ao — 21K, dod — pHoB/8x . . . (27)

Next let I/ be what 7, becomes when expressed in terms of the dashed letters.
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Note that [, does not stand towards [, in the same way as I’ towards /, as appears by
the equations
ml =1, =104 . . . . . . . . (28).

In utilising equation (21), then, the analogue of I’ will be m~'l';, Thus the part
contributed by ¥, to the terms [¢'] — I’ on the right of equation (21) will be

— 2xA(m ) —m ™) = — 2m~ ALy + m ™y ¥~ —m ™y, [equation (10)],
e 2m—lqu0,xl,

since [former paper, equation (39)] ¥~ = y~!y'~L  Assuming, then, ¢, to be of the
first class of §9, and defined by -

do=—2dl . . . . . . o0 (29),
equation (21) gives

24 = 24’y + (uH?/dw — 4nK,~1d?)
—SS(FV 4 S V) 3V (V=o' ()Y}
+ XVog™ ( )g+eVX'( )meg7 oo oo o  (30),

where I, o', 7/, and 7 have exactly the same meanings as before, so that, indeed,

V=Tom+ 20K, 4% — p B8 . . . . . . (31).

E. Connection between B and e.

56. So far it has been assumed that there are two independent kinds of external
force denoted by E and e, and by E, and e, This is contrary to the usual custom, but
seems to me to be a necessary consequence of assumptions always made as to the
difference in nature between what is ordinarily called the displacement current and
the conduction current. ‘

The independent variables required to fix the electric state at a point have for
mathematical convenience been taken as D and d. These are, perhaps, not the most
natural. It would seem from the ordinary views as to the two kinds of* current as if
the dielectric displacement d, and the conduction displacement k are the most natural.
Moreover, I believe it is generally held that d has exclusively to do with the potential
energy of electrification. It seems, then, likely to lead to correct results to assume
that if d and k were taken as the independent coordinates, there would never be any
external force of type d.

As this conclusion may seem open to question let us put the matter in a different
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way. If (vegarding d and k as the independent electric coordinates) we could be
certain that we had found the full expressions for /, I, x, x,, both types of external
electromotive force would be zero. But we can with considerable certainty say that
we have not found these completely, so far as they depend upon k and K (electrolysis,
&c.). On the other hand, it is by no means so obvious that we have not found them
completely so far as they depend on d and ¢. Let us then assume that the external
force (exclusive of frictional forces, of course) of the latter type is zero. If we can
point to no experimental facts contradicted by this assumption, we may consider that
the simplification is warranted.

57. Now (§ 28) the work done per unit volume by the external forces E, e of
equations (28), (29), § 50 above, while D and d suffer the increments dD and dd respec-
tively, is

SEdD 4 Sedd = SE (dd + dk) + Se dd
= S(E + e) dd + SEdk.

Hence, if d and k be taken as the coordinates, the forces of those types would be
E + e and E respectively. The assumption just made then leads to

E4e=0, E,+e=0 . . . . . . . . (1),

where it must be remembered that the exact meaning of these four symbols is that
given to them in § 50 above, not the meaning they had previous to that section. If
we assumed that « was independent of H, equation (1) would be equally true of the
previous meanings of the symbols.

We shall now always suppose e to be replaced by — E.  'With regard to e, and E,,
note that by means of equation (1) and equations (30), (31), and (39) of § 50

PO0v]ee=0 . . . . . . . . . . (2),

which shows that what we have called the potential is continuous throughout space.
This will be found to lead to the result that contact-force cannot be explained without
a slight extension of the independent variables of I, or the assumption that /; is not

zero. It does not, however, prevent on present assumptions an explanation of the
PrvTIER effect.

IV. DETAILED EXAMINATION OF THESE RESULTS.

A. Maxwell's Results.

58. The justification of the present theory, where it differs from accepted theory,
must be based on an examination of its results in detail. First, then, let us compare
MDCCCXCII,—A. 5A
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with MAxweLL's results. With the exception of (1) the expression for current in
terms of displacement for a moving body, and (2) certain of his mechanical results
which I hold to be inconsistent with certain others of his own, it will be found that
his results flow from the equations now established.

We put down, then, simple forms of [ and x, the first involving as independent
variables ¥, d and H, and the second ¥ and K only, and compare the results with
MaxweLr's. Besides MAXWELL'S results we shall find that this form of  is sufficient
to take account of the interdependence of magnetisation and strain, and of specific
inductive capacity and strain. After that we add certain terms to, and otherwise
generalise [ and «, still, however, regarding them as involving no independent vari-
ables except such as ocour in the lists (25), (26), of §27. Thermoelectric, thermo-
magnetic, and the HArL phenomena are thereby accounted for and discussed in
detail. Finally, to account for electrostatic contact-force (and incidentally capillary
phenomena), we shall assume ! to contain certain independent variables not in the
list (25) of § 27, and shall adopt a certain form for /.

59, For MAXWELL’S results it is only necessary to assume

| =2uSdK~'d —SHuH/8z — SL,H. . . . . . . (1),
x=—SKRK/2. . . . . . . . . . . . .. (2),

where I is a flux, p and K* are self-conjugate functions of Class I. of § 9, and R is
one of Class II, all four being functions of strain and temperature. From these
statements, and § 9, it follows that

# I did not notice when first [former paper, p. 1197 using K in this signification that it already had a
gpecial quaternion meaning (conjugate of a quaternion). As this meaning is never required in the
present paper, and very rarely in physical applications, I have nevertheless retained the present meaning
for K.

I take this opportunity of apologising for the apparent want of system in my notation. It has been
brought about by an attempt to compromise between accepted notation and a system of notation more
suitable for quaternion methods. May T suggest the following system ? First, let the Greek alphabet
be left as a happy hunting ground for symbols of every denomination (vectors, scalars, linear vector
functions, &c.); secondly, let the ordinary alphabets, A, B... a,b.. ., be used for scalars and linear
vector functions of a vector (which so often in important cases reduce to scalars) only ; thirdly, let bold
type be used for vectors only and write i, j, k instead of 4, j, & ; fourthly, let Hammwron'’s X, 8, T, U, V
be transferred to the German alphabet ; fifthly, let the vest of the two German alphabets be retained for
mathematicians who are hard pressed for suitable symbols; sixthly, let the symbols of differentiation be
quite independent of the above restrictions. The following somewhat chaotic but classified list of some
of the chief symbols used in the present paper may serve to convince the sceptic that some such system
is necessary. (1.) Linear vector functions of a vector (20), A B, C K, R, a, b,¢, 7, Y, O, ¥, Q, v, u, w, v,
¢, x, ¥. (2.) Vectors (31),4, 7, %, A, B,C,D, E,F, H,I.X,L N, P,a,b,c,d,e h,06,d=, q ¢ 1, Uy p,
o, 7, w. (3.) Scalars (32), D, E, ¥, H,P,Q, W, X, Y, Z f, g hl, mn,q 8tuva7ysz0\§
D, %, B,t. (4) Symbols of differentiation and variation, A, d, 0, A, V, 8, & (5.) Symbols of peculiar
quaternion meaning, S, T, U, V,
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I = 2rSAK'"1d — SHWH' /87 — ST}/ } )

ll/ — QWSd//K//_.l d// — SH/’M/,HI//87T' — SINOH/I J
o = —SKRK/2, o' =—SK'RK’/2. . . . . . (4)

60. Most of MaxwELL's results are collected together in § 619 of his ¢ Electricity
and Magnetism,” 2nd edition. In our notation they are

B=VVA . . . . . . . . . (A)(©®)
E,=VpB —oA/ot —V2. . . . . . . (B)(6),
where 0/0¢ denotes differentiation with regard to time at a fixed point of space, and

where z is some scalar put for MAXwEeLL'S ¥.  Equation (C) we omit for the present,
as it requires more detailed discussion than the others.

B=H+4l. . . . . . . . . (D))
4l =VVHE . . . . . . . . . (E)@.
=KEdr . . . . . . . . . (F)()
K=R-E,. . ... ....(@)/o).

Equation (H) we also omit as in this, the present theory certainly gives a result
different from MAXWELL’s,
B=pH . . . . . . . . . (L)(11),

“when the magnetisation arises from the magnetic induction,” MaxweLL adds. The
equations omitted are

Mechanical force due to field = VOB’ — D'Vz — n'VQ . (C) (12).

¢C=X+od/e. . . . . . (H)(@13)
D=—8vd* . . . . . . (J)(14).
=8Vl . . . . . . . . . (15).

% The omission of the minus sign in MAXWELL’S equation e:=SVD is obviously a misprint. [See
equation (J) § 612.]
5 A2
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In these, D/, #" have been substituted for MAXWELL’S ¢, m, as the latter symbols
already have, in the present paper, a different meaning. ~ “ When the magnetic force

can be derived from a potential ”
H=-VQ . . . . . . . . . . (16)

[There is no risk of this scalar © being confused with the Q of §§ 9, 10, 54 of the
present paper.] In addition to these, he gives in § 613 the surface equation corre-
sponding to equation (14), viz.,

D/ =[SUV@sy . - - . - . . . (K)(17),

where D, has been put for his o.

61. Equation (5) is the same as equation (22), § 26, above, (7) as (28) § 26, (8) as
(14) § 25. We can now show that equations (6), (9), (10), (11) all follow if we
assume that there is no external force other than that due to friction.

By the last paragraph of § 50 above, we see that what MAXWELL calls E is not
likely to be what on the present theory we call E. To compare with ordinary
theories, then, it is convenient to introduce a new intensity E, defined by

EozRK...........(18).

Since E, and RK (§ 10, Prop. VI, above) are both intensities, equation (10)
follows. To prove (9), note that

V= — Ve = —RK = —E,
Vl= — 47K,

so that putting e of equation (28), § 50, equal to zero,
d = KEO/4’H',
from which equation (9) follows by Prop. VI, § 10. Again,
B = 4nyVl = pH + 441,
and therefore
B=pH +4zL, . . . . . . . . . (19),

which implies that the part of B’ “induced” by magnetic force, is p’H'. This is
equation (11).

62. To prove equation (6), note first that putting E = 0, equation (29) of § 50
[modified by equation (39) of § 50] gives

Ey=—A—Vi. . . . . . . . . . (20
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Next note that by d/dt, or a dot, is denoted differentiation with regard to time,
which follows the motion of matter, and by 9/0t, a differentiation at a fixed point of
space, 80 that d/d¢ is commutative with V, but not with V', and 9/0¢ with V’, but not
with V. Hence, as is well known,

djdt = —Sp'V'. 48/t . . . . . . . . (21)

Now, by equation (20), ‘

E,= X/-lE() = — X'—ld(xlA')/Olt — Ve
—_ Ar — X,—l).(,A-' . V,'U.

Now [former paper, equation (25)],

Xo = — V,Swp’,
so that
_ X/_1>'</A1 — X,—lv]_sA//;II — V’]_SA'[;’I,
and, by equation (21),
— A = —0A'Jot+8pV' . A,

therefore
E,= — 0A’Jot + Sp'V'. A’ 4+ V' SA'p’, — Vv
= — QAfot + Sp'V . A — V'S5 — V' (v — SA)p)
= — 0A'Jot + Vp'VV'A — V2
= — 0A’Jot + Vp'B — Vo,
where

r=ov—SAp . . . . . . .. (22).

This proves equation (6). Of course, this more complicated form of equation (20)
is necessary for some purposes, but the simpler form is more useful in discussing the
general theory. From the simpler form, indeed, we may see at once that MAXWELL’S
result must follow, since it implies the truth of the principle from which he deduces
his result. That principle is (‘ Elect. and Mag.,’ 2nd ed., § 598) that the line integral
of E'; round any closed curve moving with matter equals the rate of decrease of the
line integral of A’ round the same curve. Since both E, and A are intensities, this
may in our notation be expressed by saying that the line integral of E, round the
corresponding fized curve equals the rate of decrease of the line integral of A round

the fixed curve. This last is clearly insured by the equation By = — A — V.
Thus in the results contained in equations (5) to (11) the present theory is in
complete agreement with MaxweLL's. Equations (14), (15), (17) may be taken as
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definitions. Equations (12), (13), (16) remain. Of these the last implies several
other equations involving Q and I. It may be left for the present. On the present
theory equations (12), (13) are not true.

63. It remains then to investigate the physical bearing of the points of difference.
Equation (13), of course, could not be expected to represent the results of the present
theory, from the definition of a current adopted in § 4 above. Equation (13) asserts
that the dielectric current is 0d’/of. The question is by what on the present theory

this statement must be replaced. Since ¢ a flux = d,
¢ =m lye = m~'xd (my " d)/dt = d' + m~1y % (mx~1) d.

Now by former paper equations (9), (11),

my lo = — LVV,V,Swp’p,

Hence
4 v ’ ey e .
;;; (mx V) @ = — VYV V,Swp’1p’y = VVx' Vap', [ibid., equation (25)]

= VX/V'lx’Vw;;'l = mx~'VV', Vaep',,
by TArr’s < Quaternions,” 3rd. ed., § 157, equation (2). Hence
¢ =d 4+ VvV V&, = ad'/ot + VV'Vd'p — SV ) 23)
¢ =1 + VvV, VD', = oD/fot + VV'VDp' ' ’

which equations have already been given in anticipation, in equation (38), § 50. In

the case of an incompressible substance (solid or fluid) 8V’ = 0, and, therefore,
C=d 48V ... (20),
and for a rigid body whose angular velocity (vector) is » this simplifies further to

c'=(i'—-V7]d'. e e e (25)

Thus, on the present theory neither d’ nor d'/0t is the dielectric current.

The effect of the difference between the theories will be very slight in most
experimental work, though it will, of course, lead to different results in the solution
of certain problems which involve currents in moving bodies.

64. There is one experimental result, however, in connection with which equation (23)
has considerable interest. In the ¢ Phil. Mag.,” V., vol. xxvii [1889], p. 445, Professor
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Rowraxp and Mr. Hurcninson describe the experiments by which they have proved
that a moving charged body acts on surrounding bodies as it should on the convection
current theory. Now, this can be shown accurately to follow from equation (23) if
we make the double assumption (1) that the medium in contact with the moving
conductor is at rest, and (2) that the slipping which thus takes place may be regarded
as the limit of a rapid shear; and approaximately to follow without the assumption.

- First, then, assume there is no slipping. Let the motion be steady. If the moving

dielectric be itself charged, we see by the term — p’SV'd’ in ¢ that the effect of its
motion is to cause the current due on the convection current theory to its charge. Since

the motion is steady, 0d’/ot = 0. To take account of the remaining term VV'V ’;;’ of ¢,
consider the current through a strip of surface constructed thus :—Take an elementary
line PQ in the surface of the conductor. Through all points of PQ draw the lines of
electrostatic induction (lines at every point of which the tangent is parallel to d').
Bound the strip of surface thus obtained at any distance from PQ by another element
pq. Infig. 1 the arrows indicate (1) the direction of motion of the conductor, (2) the

Fig. L.

gz

positive direction (PQgp) round the strip when the positive direction tk’)‘Oﬂgk it is
that of the motion at PQ. The current through PQgp = — [[S¢'d3’ taken over the

strip. The part contributed to this by the term VV'Vdp of ¢ is
— [[sasvvap = —[sdpap

by equation (3), § 5. The parts contributed to the line integral by the lines of
induction pP, Qg are zero. Hence the current through the strip

_— S.—P—lei)/ + st‘éd/f;t

where PQ, pq stand as usual for the vectors PQ, pg. The first of these terms is the
rate of flow in the direction of motion of electrostatic charge through the element
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PQ. Hence, if at pg p’ is small enough to be neglected in the above expression,
the whole current which on the present theory would be flowing through the strip
PQgp is the same as the current due to surface charge, which on the convection
current theory would be flowing in the same direction across the element PQ. The
extension to the case when slipping is allowed and the dielectric is at rest is obvious.

With regard to the plausibility of this explanation, it must be remembered that in
this paper we admittedly do not take account of the independent motion in the very
same space of two mediums such as air and ether. Now, probably,* the ether is at
rest relative to the conductor, and it is reasonable to suppose that the relative motion
of the conductor and the ether is of more importance in connection with the part

VV'V dp of ¢ than the relative motion of the air and the conductor. On the other
hand, as the air carries about with it any charge it possesses, it is the motion of the

air we must consider in interpreting the term — p'SV'd. Indeed, if we suppose the
ether only to bound the conductor and the molecules of air, and that the ether is
mainly at rest (¢.e., acts to the conductor and the molecules of air much as an ocean
of perfect fluid, which could slide over surfaces, and was originally at rest, would act
to the conductor and molecules supposed immersed in it) the explanation is complete.
[T do nol wish to imply that I endorse this theory of the relative behaviour of the
ether and matter].

On the whole, I think it may be said that this test of the correctness of eq. (23) is
fairly well met.

65. Before comparing eq. (12) with the corresponding results of the present theory,
it is necessary to make one or two remarks on passages from MAXWELL’s ¢ Electricity
and Magnetism.” In the quotations I am about to make I have in every case changed
MAXWELL'S notation to the notation used above, as leading to a clearer comparison of
results. Consistently with this, I have always substituted Quaternion language for
the corresponding Cartesian.

In the first placet I wish to discuss MAXWELL’s views concerning the scalar he calls
¥, and which has been above denoted by z [equations (6) (12) (22)]. In his second
volume he seems to intend the symbol always to have the same meaning. The first
place in which it occurs in this volume is in § 598, where he is investigating the
expression for E',. After proving that

E,= Vp'B — 0A'/ot — V2,

he proceeds : “The terms involving the new quantity z are introduced for the sake of
giving generality to the expression for E\;. They disappear from the integral when

% According to a report in ¢ Nature,” September, 1891, p. 454, Professor Lopee described to the
British Association experiments which go to prove this. I have not yet seen details of the experiments.
1 Before going further, attention may be recalled to the footnote of § 38 above: .
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extended round the closed circuit. The quantity z is, therefore, indeterminate as far
as regards the problem now before us, in which the total electromotive force round
the circuit is to be determined. We shall find, however, that when we know all the
circumstances of the problem, we can assign a definite value to 2, and that it repre-
sents, according to a certain definition, the electric potential at the point p”.” Now,
I have looked in vain through the subsequent part of his treatise to find the promised
definition of electric potential, and I have tried hard on MAXWELL’S own assumptions
to see how the definite value he here speaks of is to be assigned, and I have totally
failed. He nowhere shows how to assign a definite value to A"; whereas he certainly
assigns a definite value to B’, and also from equations (9) (10) above, he also clearly
assigns a definite value to E,. From the equation just given, then, it follows that V'z
must be indefinite in order to counterbalance the arbitrary part of 0A’/o¢, which is
necessarily of the form V' (some scalar).® Leaping over this difficulty of MAXWELL'S
assertions, however, ¢.e., supposing 0A’/ot definite, the question still remains what is
the definite value of z? Light seems to be thrown on the question by the assertion
above that it is the “electric potential,” and the following, taken from § 630 of his
treatise :—

“The energy of the system may be divided into the Potential Energy and the
Kinetic Energy. ,

“The potential energy, due to electrification, has already been considered in § 85.
It may be written

W = 5%,

DO

where ® is the charge of electricity at a place where the electric potential is 2z, and
the summation is to be extended to every place where there is electrification.
“If d' is the electric displacement, the quantity of electricity in the element of
volume ds” is
D = — SVd'ds,
and

W=-—1 f” Sv'a'ds’

where the integration is to be extended throughout all space.” He then shows that
it follows that

W =4 [[ savads,

and proceeds :

* For VV' A’ is assigned for every point of space and [Vd='A'J,, s = 0. 1t is well known that when
this much and no more of a vector is known, it contains an arbitrary term V' (a scalar), and that this is
the full extent of its arbitrariness.

MDCCCXCIL,—A. 5B
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“If we now write B, the electromotive force instead of -~ V'z, we find
W=—1 Hf SAE)ds’".

“ Hence, the electrostatic energy of the whole field will be the same if we suppose
that it resides in every part of the field where electrical force and electrical displace-
ment occur, instead of being confined to the places where free electricity is found.”
Were it not for this last statement, the interpretation I should put on the whole of
the above passage would be expressed thus :—In the particular case of electrostatics
B = —V7zand W = — L{[[[SUE,/ds. 1In the general case, where the electricity
is not stationary, E; cannot be put in the form — V'z; but we shall nevertheless
assume that the equation 2W == — [[[SA'E,'ds" is still true. This seems to me the
interpretation that presents least difficulty, but it seems hard to reconcile it with the
last sentence quoted, which implies that the equation 2W =|[[[SA'V'zds" is exactly
the same as the equation 2W = — [[[SA'E,'ds’. There seems only one other possible
interpretation of the passage, but that lands us in hopeless difficulties. This expla-
nation is that the E," which occurs in § 598, where it cannot be put in the form — V',
has a different meaning from the E," which occurs in §§ 630, 631, where it is = — V'z.
If he has changed the meaning of E;, we may presume that matters have not been
further complicated by a change in the meaning of z. In this case §§ 630, 631 may
be put thus :—

(1) It is assumed that the energy of the field can be divided into two parts,
electrostatic and electromagnetic.

(2) The former of these, in the absence of electric currents, can be put in the
form % [[{Sd'V'zds” where z is a scalar. 1t is assumed that this statement
is also true when there are electric currents present.

(3) It is assumed that the z appearing in this expression is the same as the z
which occurs in the general equation E, = Vp'B' — 0A//ot — V'z; and it
is convenient to give it the name electric potential.

It will be acknowledged that these assumptions are more unwarrantable than the
one required for the first interpretation, and therefore I shall understand the passage
to be thus, as at first, correctly interpreted. But if this be so, we are as far off as
ever from the conclusion that z has a definite value which can appropriately be called
the electric potential.

66. This is no mere question of terms, for [equation (12), above] MAXWELL asserts
that in the expression for the force due to the field occurs a term — D'V’z, and here
the indefiniteness is not counterbalanced by the corresponding indefiniteness of 0A’/ot.
There are more ways than one of compromising to get out of the difficulty.* The

* For instance, we may (arbitrarily) render A’ definite by the equations SV'A' = 0 [Sd='A"],,;, =0,
and thus render V'z definite; and we may then assert that equation (12) is correct.
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course followed here is, of course, to abide by what the present theory leads to, and
then to choose that particular interpretation of the above passages which appears
least at variance with our results. [It will be seen from the above that the state-
ments at the end of §50, above, are true, viz., that the potential » of the present
theory is certainly not [equation (22), § 62] the same as MAXWELL'S potential z, and
that without some such assumption as SV'A’ = 0, [Sd3'A’],,, = 0 our potential,
like MAXwELL's, is indefinite apart from an arbitrary additive constant. Thes
question of the arbitrariness of the potential s one merely of terms.]

It is, perhaps, unnecessary now to say that the position I wish to maintain is that
MaxweLL has not investigated in a perfectly general manner the consequences of his
own theory, and that, consequently, some of his general equations may prove incon-
sistent with that theory. Equation (12) I hold to be such an equation. So little
right, indeed, has he to put this down as one of his general results that it is, I hold,
inconsistent with other parts of his treatise. For instance, if the equation were
consistent with equation (4), §640 (‘Elect. and Mag.,” 2nd edition), we should
have V,/SH,'T" = V'QSV'T’, which is certainly® not the case in general on MAXWELL’s
theory. I shall not, then, compare the mechanical results of the present theory with
equation (12) at all, but shall adopt the simpler process of comparing the stress which
results from the present theory with that which MAXWELL obtains in Chapter V. of
Part 1., and Chapter XI. of Part IV.

67. Before this comparison another matter must be considered. MAXWELL, in
accordance with, I think, universal custom, supposes that a molecular couple exists
due to magnetism. In the first place this extraordinary exception to our ordinary

* As might be expected, the relation is true in very many important problems whose details have been
worked out, but it is not true in general, even when there are no currents. Dropping the special nota-
tion of this paper for the moment, let 7, # have their usual Cartesian meanings. Denote differentiations
with regard to r by dashes. Let I be any function of . If there be no currents, and if

Q =k,
then will
— H = VQ =i 4 palF'/r,

and [from the relation SV (H + 4#I) = 0, which is the only equation to be satisfied]

I=1¢ (GF + 8F)/4r.
In this case
47V, SIH, = — 4#SIV.VQ = (vF’ + 3F) {i22F'/r + p[F' + 2*d (¥F'[r)[dr]/r},

and

47VQSVI = — (/) d (°F + ST)/dr.{iF + poF'Jr},

which are clearly not in general equal. The above expression for I is, of course, not the general one for
this case, as we may add to it a term VVe where o is any vector. Also, it is assumed that [ is such
that both H and I are everywhere continuous, .c., ' and F' are everywhere continuous. For instance,
put F=(r —a)?fromr=0tor=a,and F = 0 from r = a to r = .

5B 2
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conceptions of stress seems to me quite unnecessary on general grounds. It is well
known that to every magnetic distribution there is an analogous conceivable distribu-
tion of ordinary statical electricity. In the ordinary action-at-a-distance theories the
mutual mechanical effects of different parts of a magnetic system would be exactly
the same as the corresponding effects in the analogue. Why, then, should it be con-
sidered unnecessary in the case of electrostatics, but necessary in the case of magnetics,
to postulate a molecular couple ?  'Why not, in other words, say that the stress which
MaxweLL would suppose existent in the electric analogue is exactly the stress really
existent in the magnetic system ? In the second place, although the process seems
viciously needless, we may, if we like, conceive any physical phenomena involving
stress as causing a molecular couple which is exactly balanced by a stress-couple. [It
must be so equilibrated in order to insure against infinite angular acceleration of an
element of matter—supposing, of course, that the ultimate constitution of matter
were not heterogeneous.| This latter stress-couple will be entirely of the nature of a
reaction, since (former paper, p. 108) it is entirely independent of the potential energy
of strain. In the present case, then, in which we suppose electromagnetic phenomena,
to produce stress, we shall have one stress exactly equilibrating another stress, neither
of them having anything to do with the Lagrangian function. This is only another
way of saying that no physical conception whatever is gained by the supposition that
the particular physical phenomenon produces a stress-couple. We shall, then, consider
it necessary to compare our results only with the pure part of the stress which
MAXWELL supposes to exist.

Thus in § 641 MAXWELL arrives at the conclusion that the stress required to pro-
duce observed electromagnetic phenomena is v where

8mvw = — 2H'SoB + oH? =87 {¢'lo+ V(VBH .0) . . . (26),
where {¢'} denotes the pure stress given by
87{¢'}o = — HSwB — B'SoH -+ oH? = — VBoH — 47eSI'H' . (27).

Now, what in the former paper (p. 108) was called the couple stress part of v, namely,
V (VB'H'. w)/8m, produces a couple per unit volume VBH'/4w = VI'H/, and this
must be equilibrated by some other couple per unit volume even when the body is
not in equilibrium. This couple can only result from a couple stress, Vew, which
produces a couple, 2¢, per unit volume ; and this is quite independent of the potential
energy of strain, and therefore of the Lagrangian function. Thus, 2¢ + VI'H' = 0.
If now, in addition to the stress vw we take account of the reactionary stress Ve,
we simply get the pure stress {¢'}w. We shall then merely compare the stress (pure)
which flows from the present theory with {¢'}.

68. It is well-known that MAXWELL's stress can only be looked on as a normal
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type of stress. It by no means explains all the known facts. It does explain
satisfactorily such known mechanical actions of real conductors—conveying currents
and bearing charges—and magnets on one another as are of the nature of apparent
actions at a distance. It does not at all explain the many known mechanical actions
of one part of a conductor or magnet on another part which can be tested only by
observing the (small) straing resulting. In other words, conductors and magnets are
found to behave mechanically, as they would if MaxwerLL’s supposed stress acted
outside them, but not as if this stress existed internally. It need not therefore be
matter for surprise if, on the present theory, what would appear as the most suitable
stress to regard as normal should differ from MaXxwErLL’s. It is only necessary that
Just outside conductors and magnets it should be identical with MaxweLL’s.

To see what on the present theory should be regarded as a normal type we must
discuss, from the physical point of view, the results of §§ 54, 55 above. As far as I
can see (but this is, of course, largely a matter for personal judgment) on the present
theory we should recognize two normal types of stress—one for fluids and one for
solids. The reason is that we may assume fluids to be magnetically and electrically
isotropic, and that fluids are subject to indefinitely large strains. On the other hand,
solids, even if magnetically and electrically isotropic when unstrained, cannot be
considered so when strained and, moreover, their strains cannot exceed a certain —
usually very small—amount without the form of / being permanently altered.

For bodies which are electrically isotropic, however large their strain, it is needless
to say that we must regard the Lagrangian function as given in terms of the dashed
letters. For such bodies, 9 of equation (19) § 54 is zero. [Forlet «”, 87... be the
vectors of which !’ is an explicit function. Since the body is isotropic the value of
!” must remain unaltered if we rotate «”, B8”... all to the same extent round the
same axis. In particular, if we increase «”, 8”... by Vex”, Ve8”, ... where € is an
infinitely small vector, {” must remain unaltered, s.e., the increment — 3Sea”,V"l” = 0.
Since € is arbitrary, it follows that V&’ ,V’l” = 0]. By equation (20) § 54 above,
we see that the assumption that [¢'] = 0 amounts to assuming that the Lagrangian
Junction of untt volume of the body when strained, however largely, is the same as the
Lagrangton function of unit volume of the body when unstrained. By equation (29),
§ 55, we see that the assumption ¢," = 0 amounts to assuming that that part of the
Lagrangion function which causes the body to differ from wvacuum, and which 1s
contributed by a gwen mass of the body, ts unaffected by strain. Hence from
equations (21), § 54, and (30), § 55, we have

For an isotropic body, of which the Lagrangian function per unit
volume 1s unayffected by stroan
2¢' = — {2I' 4+ ZS (« VI + ¢/ ,V')}

|
I> . (28).
+ IV () VU =o' (), VU}
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For an isotropic body, of which that part of the Lagrangioan
Junction per unit mass, which causes the body to differ from i

vacuuwm, s unafjected by strain o (29).
of = (pH? 4w — 4nK,~18%) — 38 (7Y + o, V7) !
SV ()Y - (), VI

It is scarcely necessary to say, that of course it is not meant to be here implied
that there is any body whatsoever whose general Lagrangian function—whether
per unit mass or per unit volume—is even approximately unaffected by strain. It is
only for brevity that we verbally contemplate such a body. There seems little or no
reason for choosing one rather than the other of these two stresses as the normal
type of stress for fluids. Both of them would satisfy the condition that for a gas
which, however large its strain, always behaved like a vacuum, the normal stress
would be the vacuum stress which resulted from identical values of H and d. As
the stress of equation (29), however, agrees more closely with the pure part of
MAxWELL'S stress than that of equation (28), we will call the stress of (29) the
normal stress for fluids.

For solids it is harder to find a suitable normal stress, but as by far the greater
number of them (non-magnetic’ bodies) behave magnetically approximately like a
vacuum, it seems to me that the most suitable is obtained by supposing {7, of
equation (27), § 55 to be zero. In this case, of course, we assume that for solids the
normal type of stress is the stress that, with identical values of H' and d" would exist
in a vacuum. Thus

For a vacuum, ¢'o = — 20K, dod — pHoH' /87 . . . (80),

but it is needless to say that this is not perfectly satisfactory. The question may be
asked why, in the present case, the stress of equation (29) should not be still retained
as the normal one?  The answer is, that the equation [(30), § 55] from which it is
derived, and which actually must, in every exact discussion, be taken in its place, is a
wholly unsuitable one for a solid, while equation (27), § 55, is a suitable one.
Again it may be asked, Why not retain the stress equation in its original form
¢ = — 2m~ xyAly/, for solids ? The answer to this is, that the important fact that
the great majority of solids behave magnetically like a vacuum is not thereby readily
taken account of.

69. To compare these stresses and their effects with MAXwELL'S, it must first
be noted that MAXxwELL has only investigated the electrostatic part of his stress
for the case of a series of charged conductors surrounded by a dielectric that behaves
electrostatically like a vacuum. I consider myself at liberty then to substitute any-
thing for the electrostatic part of his stress which reduces to his for that particular
case. The stresshe obtains in Chapter V. of Part L. of his treatise is — 2#K;"1d"( )d.
For the particular case mentioned this may be written
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VA () V)2 — S8 (VI + 4xK, 1 d)/2,

since for that case (VI'= — 47K;~'d. We shall assume that this is the correct
expression in general, since thereby the stress of equation (29) is rendered identical
with the pure part of MAXWELL’s stress, The pure part of his electromagnetic stress
is the {¢'} of equation (27) above. Let us then put

b0 = VdaV'l[2 — ST (V' + 47K, 10')/2 — VBwH /87 — oSTH//2 (31),

or, if we assume that the complete expression for «" is — SK'R'K’/2 [equations (28),
§ 50 and (20), § 85],

b0 = — VAoB /2 + oSd (B, — 47K,~' d)/2 — VB'oH /87 — oST'H//2 (31a),
and call ¢,/ MAXWELL’s stress.  [Of course I do not thereby mean to render MAXWELL
responsible for this form.] Tf we regard Vd' () 4V'0'/2 as the correct generalisation of

MAXWELL’S electrostatic stress we may indicate it by calling [¢,] the second form of
MAXWELL’s stress where

[b)/] o= VdwVT/2 — VB wH |87 — QSI’H’/Z oo (82),

which gives, on the assumption that the complete expression for 2’ is — SK'R K'/2,
[ 0 = — VdwE,/2 — VBoH /87 —oSTH/2 . . . (32a).

If we now assume that the only variables of /" are H and d’, equation (28) gives
2¢' = — {20 + S(d,\VT + BH/4m)} + Vd'( ) VI — VB ( )H /4w . (280),

of which the foll_owing particular cases should be noted :—

If U be quadratic wn d" and H, } Lo .. (28D),
¢ =Va( )VV)2—VB( )H/8w
If U be given by (3), § 59, and « by (4), } ... (28¢),
¢ =—Vd( )E,/2—VB( )H/8z 4 SIH/2

from which it follows from equation (32¢) that in this case
¢ =[¢s]+ ST, +I)H/2 .. . . . . . (284, 32D),

so that this stress differs from the second form of MAXWELL'S stress by a hydrostatic
pressure which is zero for non-magnetic bodies.
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Under the same circumstances (/" a function of H' and d’ only), equation (29) gives

¢ =Vd( ) V2 — S (VT + 40K, @))/2
— VB ( )H/87m — SUH/2 + (uo — 1) H*87 . . . . (29a).

Hence, with the electromagnetic system of units for which p, = 1,

B = . . . ... (290, 31b),

in which it should be noticed there is no necessity to assume that the complete form
of @' is — SK'R'K'/2, nor is it assumed, as in equation (28d, 82b) that ! has the
particular form given in equation (3), § 59.

To sum up, of the two equations (28) and (29), (28) agrees more clogely with
MaxwErLL as to the electrostatic part, and (29) more closely as to the electro-
magnetic part. On the whole, equation (29) agrees more closely than (28).*

Of course, the normal stress [eq. (30)] we have adopted for solids is by no means
the same as MAXWELL’s, except for non-magnetic bodies whose specific inductive
capacities are the same as for a vacuum. But this does not prevent our normal
stress explaining all that MAXWELL'S stress explains, and, indeed, from the remarks
at the beginning of last section, it is now evident that for all useful purposes either
the one stress or the other will serve equally well.

70. We have now compared the results of the present theory with all MAXWELL's
results contained in equations (5) to (17), § 60, above, except (16). Except for
equations (12), (18), the agreement is exact, and I think it may now be claimed that
what the present theory gives instead of equation (12), agrees, as well as (12), with
known facts, and what it gives instead of (13) agrees better than (13).

Equation (16) itself is obvious enough since it merely asserts that H' has a potential
when there are no currents in the field. But it suggests another question—does the
present theory lead to the ordinary mathematical theory of electromagnetism ? It
can be easily shown to do so. The mechanical results when expressed in terms of
H' and I’ have just been shown to result in the same forces and moments on conductors
and magnets regarded as wholes, as does MAXWELL'S stress. These are all the
mechanical demands of the ordinary theory. Equation (19), § 61, shows that the
relations between the whole magnetic moment per unit volume, the permanent
magnetic moment per unit volume, and the magnetic force at the point, may on the
present theory, be regarded as the same as in the ordinary theory. Only one other

* Notwithstanding this, and the fact that I have in this paper called the stress of equation (29) the
normal stress, I think equation (28) is to be preferred, partly because of the greater simplicity of the
assumptions which lead to it, and partly because of the greater simplicity of the electrostatical results
flowing from it.
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demand is made by the ordinary theory. H’and A’ on the one hand, must be deter-
mined in terms of ¢’ and I, on the other, by means of particular relations.

Let us suppose—merely to get rid of the dashes—the standard position to coincide
with the actual position. One difference between MAXWELL’s theory and the ordinary
theory is that according to the latter it is assumed that each individual magnetic
molecule and each elementary current has its own influence—independently of the
rest—in producing terms in A and H. Thus, H consists of two parts, the first
depending only on the magnetism and the second only on the currents. The
first = — VO, where Q = — [[[SIVuds [Maxwgrrr's ‘Elect. and Mag.,” 2nd ed,
§ 383, equation (3)], where u™! is the distance of the element ds from the point
under consideration, and where in the differentiations of Vu the end of w~! at the
element ds is supposed varied. The second part is obtained on the assumption that
each closed current causes a term in H which the corresponding magnetic shell would
cause. The second part is thus found to be V|[fuCds.* The first part of A is
supposed to depend on I in the same way as the A, called the vector potential, of
Part III. of MAXWELL'S treatise depends, t.e., = [[[VIVuds [§ 405, equation (22)].
The second part, as with H is obtained by assuming that any closed current will
cause a term in A equal to the term in A that would be caused by the corresponding
magnetic shell. The second part is thus found to be [[fuCds.t We will suppose
that the ordinary theory also admits that A is arbitrary in containing a term Vu,
where w is a scalar. (This is only to render the comparison with the present theory
simpler. Perhaps it ought to be said that the A thus obtained in terms of I and C
on the ordinary theory is found to satisfy the conditions SVA = 0, [SdZA], ., = 0,
and that the present theory only agrees with the ovdinary theory if we arbitrarily
impose those relations.) All this may be expressed thus. Defining Ay and O by

Ay = ”[?LCOZ;, Q= — j-H’SIV’leQ Coe oo (33),
we shall have

A=A+ .(”VIVudg +Vw. . . . . . . . (34)

H=-—-VQ4+VA,. . . . . . . . . . . . (35

If ¢ be any quaternion function of the position of a point which may be dis-
continuous at certain surfaces, we have

* The magnetic force at an external point due to a shell of strength ¢ = cV”SdEVu = — c” Sd=V.Vy
= c”VdEV.Vu [since V2 = 0] = cfdeu = chudp. The reason for the change of sign in V on crossing
the integral sign is that when outside one end and when inside the other end of »~! is naturally
supposed in the differentiations of Vu to vary.

+ This is not inconsistent with §§ 616, 617 of ¢ Elect. and Mag.,” 2nd edit., for there MAXWELL is
considering the two parts together.

MDCCCXCIT.—A. 5 ¢
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dmrq = Vlﬁj uqds = — V H‘( Vuqds =V <Hj uVqds — ”ua’Eq).

Now, on the present. theory (by means of the equations 4#C = VVH, [VdsH],,, = 0,
and by elimination of B from the equations B = H - 471, SVB = 0, [S/SB],,, = 0),

VH = 47 (¢ — SVI), [dSH], |, = — 4= [Sd31],. .

Hence substituting H for ¢,

H = vqﬂ ug ds — [[[ usvids + ”anﬂ) :v<m ug ds + m SIVu dg>.

This is equation (35). Again substituting A for ¢, and putting
tmw = [[[ usvads — [[u8 dsa,
we get [equations (19), (20), § 26]

i (A —Vu)=V (” uB ds = — Hf VVuB ds = 4 j’H VIiVu ds + H! VHVu ds

Also,
[[[ veve ds = ([[ oV vE ds — [[ 0V dsB = 4 [[[ w0 ds

This proves equation (34).

That the present theory (and MaxwrLr’s), so far as H and A depend upon I and C,
thus leads exactly to the ordinary theory is of some importance. One consequence is,
that the mechanical action between bodies carrying currents and the induction of
currents by the variation of position and magnitude of other currents and magnets,
must necessarily be independent of the nature of the medium separating them, so long
as that medium is non-magnetic. This is in direct contrast with the known large
influence the medium separating two charges of electricity has on the mutual actions
of the bodies bearing the charges. On the present, as on MAXwELL’S theory, this is
simply owing to the fact that the ordinary theory of magnetism is in the points just
mentioned, accurately true, whereas the ordinary theory (action-at-a-distance, with
consequently no difference of specific inductive capacity for different media) of
electrostatics is not even approximately true. [Whether or not the theory I have
called the “ ordinary” theory has actually ever been formulated is of little conse-
quence. I have, in the above, accurately enough described what I mean by the
term. |
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B. Modifications necessary on account of Hysterests.

71. This seems to be the place to consider what bearing the phenomena of hysteresis
have upon such theories as the present. No theory of electromagnetism can be
considered complete unless it takes this important, group of facts inte account. I do
not here propose to give a theory of hysteresis—so that the present theory must be
in this sense confessed incomplete—but it is necessary to notice what modifications
ought strictly to be made in the assumptions hitherto adopted.

Professor Ewing (‘Phil Mag.,”™ V., vol. 80 [1890], p. 205), has given a theory
which adapts itself to dynamical methods such as the present. In his theory the
phenomena of hysteresis depend upon the fact that groups of molecules can have
various stable configurations, different groups at any instant having very different
degrees of stability. The stability of a group is liable by variation of H and ¥ to
break down, so that the group takes up another configuration of greater or less
stability, and the oscillations which necessarily ensue on the change result to our
senses in the production of heat. On this view hysteresis is a phenomenon that
prevents us, if we would take full account of the facts, from ignoring certain coordi-
nates we have hitherto ignored. We can, however, go on ignoring these coordinates
if we suppose ! not to have a constant form in terms of the variables not ignored
above, but a form which depends on the particular state as to these groups of mole-
cules of an element of volume. We must, then, suppose certain variables-—call them
hysteresis-coordinates—which define the relative numbers of groups of different kinds.
Of these { will be a function, but they are not of the nature of ordinary dynamical
coordinates. Their value merely determines the instantaneous form of 7 as a function of
ordinary coordinates, so that if one or more of the hysteresis-coordinates change, the
form of / changes and a new dynamical era begins. In fact, they are very analogous
to 0, and like @ they must not be varied when the dynamical coordinates are varied
in order to obtain the equations of motion. A mathematical development of Professor
Ewing’s theory may be supposed to furnish the nature of these variables, and experi-
ment must then be appealed to at once to test the theory, and if the test, be favour-
able, to find the exact form of / in terms of the variables. And from the mathematical
development, or that combined with experiment, we must look to find the laws of
variation of the hysteresis coordinates when H and ¥ vary.

72. This, of course, is only to be looked upon as an ideal procedure of events,
which, perhaps, for many years cannot come about. Meanwhile, tentative hypotheses
as to the nature of these variables might be made. For instance, it might be
assumed that [ is always correctly given by equation (1), § 59 above, and that the
vector I, is the sole hysteresis coordinate. In this case p (and K ?) would, of course,
be assumed a function of I, as well as of W. Though this is probably much too

* Or ¢ Nature,” Oct., 1891, p. 566.
5 ¢ 2
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simple a theory for the explanation of all hysteresis phenomena, yet I believe it could
be made to account for nearly all the known facts.®* But, at present, even if this
simple assumption were made, we are very much in the dark as to how I, varies with
H and ¥, and are compelled to fall back on such pure conjectures as are illustrated in
the foot-note. To mention only one thing—nearly all the detailed experiments on
hysteresis deal only with variations of H parallel to itself.

73. Thus it is useless to attempt a satisfactory theory of hysteresis at present,
though we can see vaguely how, perhaps, in the future it may be made to fit into the
present theory.

But these considerations show that we must be very cautious in discussing results
which depend upon the form of / in terms of H, for they imply that we are very
ignorant of this form, even when we know how I varies with H under assigned
circumstances. Thus, for instance, in equation (30), § 55, we can learn little of the
true meaning of ¢’y so far as it depends upon H'. The rest of ¢ in this equation,
however, being independent of the form of /, gives us information of no doubtful
character.

C. On the Strains accompanying these Stresses.

74. The object of the present paper is to discuss the general theory of electro-
magnetism. It is not proposed, therefore, to deal more than is absolutely necessary
in particular problems. A word, however, must be said as to a certain class of
problems connected with the stresses just investigated.

After the question of hysteresis has been settled in some such way as just
indicated, it will be possible to discuss in detail the exact form of /') of equation (29),
§ 55 above. To do this, the data on which to argue will generally be the strains
which accompany electromagnetic phenomena. This necessitates the consideration of
such strains.

75. It must not be supposed that these strains will bear the same relation to the
stresses as strains bear to the ordinary stresses considered in the mathematical theory
of elasticity. From equations (26), (27), § 50 above, we see that in the case of
equilibrium (no external stress)

D/VW —F = A, F=[¢Uss

% By suitably choosing the form of w in terms of I, and the four functions now to be introduced.
Let |w]|, [w], {w} be three positive scalar functions of Tw, and let Qw be a vector function of the form
Tew function (Uw)—not in general linear—such that SwQuw is always negative. The form of Q, like that
of u, is a function of I, Let H be the present and h any previous value of H. Then assume that

I, = QN where N = |H|HJH ] e~ fn {2 ™2 T (dh 4+ UHT4h),

the lower limit of the first integral sign being, strictly, the value of H ab an indefinitely remote epoch,
but practically at a time determined by the expomential. I give this merely to show in what sort of

way we may suppose I, to depend on the history of the body.
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Taking for simplicity the case where there is no external force (F), or force potential
(W), we have ‘
dA =0, [¢Uv], . ,=0.

Substituting now from equation (27), § 55 for ¢, we see that this means that there
is equilibrium owing to the simultaneous existence of three stresses: (1) the
ordinary elasticity theory stress, owing to terms which only involve W; (2) the stress
which is independent of /, and, therefore, depends only on electromagnetic quantities ;
(3) a stress due to terms in /,, which involve both ¥ and electromagnetic quantities.
When these last are linear in W, the resulting stress will depend, like the second, upon
electromagnetic quantities only. If not linear, they will depend both upon ¥ and the
electromagnetic quantities. 1t is quite possible that there should be no strain at all,
and yet a very sensible stress due to electromagnetic actions.

In fact, in solving the elasticity problem—having given the distribution throughout
the field, of dielectric displacements, of currents, and of magnetisation, required the strain
at any point—the only way in which the electromagnetic data can be used is, by
finding the force per unit volume and surface respectively due to them, and then
treating these forces as external. That is, the knowledge of the stress which produces
the mechanical effects of electromagnetism is of 1o use in discovering the strain
actually resulting; all the knowledge we can thus utilise is that of the forces (per
unit volume and surface) due to such stresses. This shows that, to find the true
expression for [ it is not sufficient to investigate experimentally what strain accom-
panies a given displacement, or current, or magnetisation at a point.* The problem
is much more complicated.  The shapes of all the bodies present must be assumed of
quite as great importance as the electromagnetic quantities in deciding the form of {
from such experiments.

76. These remarks may be illustrated by considering the effect of MAXWELL’s stress
in two different cases. Choosing one shape of soft-iron body it will be found that the
magnetisation will, according to MAXWELL’S stress, compress the body ; choosing
another shape, expansion results.

Suppose we have (1) an anchor ring of soft iron, (2) surrounding this a layer of air
of uniform thickness, (3) surrounding this n coils of insulated uniformly distributed
wire carrying a current c¢. Take columnar coordinates », 9, 2, the axis of z being the
axis of the anchor ring, and let 7, j, £ be unit vectors (functions of the position of a
point) in the directions of dr, d9, dz respectively. At any point inside the coil
we have H' = 2n¢j/r. Assuming p’ to be a constant scalar I' = (u' — 1) H'/4m.
Hence, irom equation (27), § 67,

(§1 8 = — NSTH/2 = — (4 — 1) V/SHE, dr = — 6 (4 — 1) ifmr®

* This seems to be the meaning of the third sentence of the small print on p. 269 of vol. 15,
¢ Encyc. Brit.,” 9th ed.
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At the surface of the soft iron B is tangential, and therefore continuous. From this
it easily follows that
L¢3 Uv Ly =0.

Hence, due to MAXWELL'S stress, there is in this case no superficial force and no
bodily force in the air, but there is a bodily force in the iron directed towards the
axis. The iron will therefore be compressed.

77. For the other case, notice that the force per unit surface due to the electro-
magnetic part of MAXWELL'S stress is — | {¢'} U], ,, and by equation (27), § 67,

— 8r [{¢'}UV],,, = [BSH'UY + HSB'U» — UvH?|, .

This can be put in several different forms, of which, perhaps, the following are the
most useful

— 8w [{JUV ., = 4w [ISUVH],,, + (H/ -+ B,)[SUV/H], ., (36)
— (4l + H/ + B))[SUV/H'|.., + 4o [TSU/E L., [ ’

where the bar indicates the mean value for the two regions bounded by the surface,
and the suffixes 7 and ¢ denote normal and tangential components respectively. Thus
B, and H/ have the same value on both sides of the surface. When B’ is parallel to
H, B = pw'H where p' is a scalar, not necessarily constant. (But if not constant it
has here a different meaning from what it has in the rest of this paper.) In this
case the tangential component of ~ 87 [{¢'}Ur'|,,, is zero. For the first expression
of equation (86) gives for the component in question

(471 + H/)SU/H,,, = B/ [WSU/H'),,, = H/ [SU/B],,, = 0.

So long then as we deal with magnetically isotropic media this surface traction is
normal. ,

Consider a magnetically isotropic body surrounded by a non-magnetic medium, and
let the magnetic region be denoted by the suffix @, so that I,/ = 0. In accordance

with what has been just proved we consider only the normal part of the traction.
Thus,

— 8w [ {' S Uv ]y, =dn [I/MSUV/HIJU, o+ BL[SUVH, .
Let now [H',], = HUY,. Thus

4 [I/H o = (/“('/ - 1) HUV/W B,n = M,HUV,M
[SU/H, = — H, [SUVH 4y = (W — 1),

the last coming from the fact that [H',], = B',. Thus
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— 8w [{¢/} UV’]a+b = (,Ul/ hd 1)2‘["12UV/“ 5
or

= [{¢3 U ]= — 20 [TUV], . . . . . . (37)

Hence for both paramagnetic and diamagnetic isotropic bodies surrounded by non-
magnetic media, MAXWELL’S stress leads to a surface traction which is always a
tension (except as in the anchor-ring when it is zero).

78. Consider now the well-known ordinary case of a soft-iron ellipsoid (u’ a constant
scalar) brought into a uniform field. Inside the ellipsoid B’, H', and I" are all constant,
and therefore {¢'} A" = 0, so that there is no bodily force. Also since [equation (27),

§67] |
(1A = VOB — V STH, + VVVIH/, . . . . . (38),

there is no bodily force in the surrounding medium. Hence, in the present case, the
only force is the tension at the surface. The ellipsoid will therefore be expanded by
MAXWELL'S stress.

D. Thermoelectric, Thermomagnetic, and HArL Effects.

79. 1t will be found convenient to discuss these various effecls together.

The natures of the thermoelectric and Harw effects are well known and need
no description here. The thermomagnetic effects are perhaps not so well-known.
The original papers of voN ErTiNesHAUSEN and NERNST (the discoverers of these
effects) are in ‘ Wied. Ann.,” xxxi. (1887), 737 and 760, xxxiii. (1888), 126, 129,
474. 'The effects are briefly described in Professor J. J. Tmomson’s ¢ Applications
of Dynamics to Physics and Chemistry,” 1st ed., § 57. The principal features of
these effects are that the electromotive forces due to differences of temperature
are modified in two ways by the presence of magnetic force. First, parallel to ©
there is an electromotive force that varies approximately as H*T'® (the ‘longitudinal ”
thermomagnetic effect) ; and, secondly, at right angles to both ® and H there is an
electromotive force BVOH, where B is a scalar dependent on the temperature, but
approximately independent of I'® and TH (the ““ transversal ” thermomagnetic effect).
The latter effect is especially large in bismuth. There is evidence that these effects
are closely connected with the Harrw effect.

80. The natural way to discuss these results would appear to be to attempt to
explain them by suitable terms in /. But on the present theory it is possible that
they may be explained by terms in 2. According to the first explanation they would
be reversible phenomena, and according to the second irreversible phenomena involving
dissipation of energy. Thermoelectric effects are certainly at present looked upon by
physicists as reversible phenomena, )

The two explanations—which will for the future be referred to as the theory of
reversibility and the theory of irreversibility respectively—will be found in many
respects very analogous, though, of course, we must expect some striking ditference of
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results.  On the theory of this paper the most striking would seem to be that, while
thermoelectric effects must in the main be explained on the theory of reversibility,
the explanation of the thermomagnetic effects by this theory is inadmissible by reason
of certain collateral consequences.

81. Let w—which has no connection with the = of §54 above—be a linear vector
function of a vector, itself a function of 6, ¥, and H ; and let

w=[0]+[L]+[2]=2[n] . . . . . . . (1),

where [#] is a homogeneous function of degree n in the vector H.
In particular, let = be given by

o= Aw 4+ BVoH — oSHCH . . . . . . . (2),

where A, B, C are linear vector functions of a vector, themselves functions of ¥ and 6

only. B and C, but not A, may for simplicity be assumed self-conjugate. Notice
that SHyV. [n] = — n[n], and therefore

(14 SHyV)w=32(l —n)[n]=A4+SHCH . . . . . (3)
Similarly,

(SKV. + SHyV. + S0,V.) SKu6 = — SK (2[0] 4 3[1] + 4[2))® . (4),

= and A will be assumed to be of a class given by
Srwods = Sr'w'o’ds’ = S57'w" 0" ds } (5)

w/ — XI_] mx/, w,/ — 1],}__.1 w\P

and, of course, exactly similarly for A. It should be noticed that unlike the two
classes of §9 above, w and A have not the property that if = or A is self-conjugate,
so also is = or A’ and =" or A”.  But they have another simple property, namely,
that if = is a scalar,

B W e e e e e (6)

It may also be noticed that wo is an intensity, and =, a flux where =, stands for
the conjugate of w.
B is assumed to be of Class II. of § 9 above, and C of a class given by

SO’QCO_& = So—“IClo-bl = SO"[/,ONO'Z)N} (7)

C = xCy, ' =yCy

so that it is very closely allied to Class 1. of § 9 above.
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It will now be seen that to obtain =’ or =" from = it is only necessary to change
A, B, C, and H into A/, B', ¢, and H/, or into A”, B”, C”, and H” respectively. The
statement is obvious so far as A, C, and H are concerned. With regard to B, we
have, by §§ 7, 9,

B' Vol = my"'Bx 'Veoy'H
= x'BVy'oH [Tarr’s ¢ Quaternions,” 3rd ed., § 157, eq. (2)],

which, with equation (5), proves the statement.

82. For the theory of reversibilily, it is assumed that 7 contains a term ¢ given by
g = — SDw0®. For the theory of irreversibility, it is assumed that x contains a
term ¢ given by g = — SKw®. Denote the various parts of E, f &c., depending
upon g by the suffix g. It conduces to clearness to arrange the general results of
these two assumptions in parallel columns thus :—

Theory of Reversibility. : Theory of Irreversibility.
! contains a term ¢ given by x contains a term ¢ given by
g=—8SD=w0 . . . . (8). g=—SKw6 . . . . (84).
This contributes terms E,, E, to the right of This contributes terms E,, E, to the right of
equations (29), (31), § 50, given by equations (29), (31), § 50, given by
E, =26, E,=0. . . (9). E/j=—%0, Ey=0 . . (9).

In this is not included the part of A due to g, In this is not included the part of a, due to g,
but this is practically given by equations (15), | but this is practically given by equmation (164)
(16), below. By equation (11), § 46, below.

N =8D {1+ SHgV.) =0 . . (10).

By equations (11), (12), § 34 (putting =, for
0w [00)

Jy=—SD (1 + SHyV.) =,0
+ SD (1 + SHEV.)=A . (11).

Jy=—[8D( + SHyxV.) wUvlays . . . (12).
Hence to the left of equations (35), (36), § 40, Contributed to the right of equations (35), (36),
are contributed for a steady field § 40, are terms (for any field, steady or not)
given by
0fy = 0{— SC (1 + SHyV.) =,0 0f, = — SK (2[0] + 3[1]
+ SC, (1 + SH\yV.) = V,} . (13). +4[2])0 — 6SK=V; . . (13a).
Ofy=—0[SCA + SHyV) «Usleys . . (14). | 0fy = 0[SKaUslurs. . . . . . . . (148).

By equations (34), § 50
B, = — 47y, V3Dw0O
= 4« {VBDO — 2CHSDO} . . (15).
MDCCCXCIT.~—- A, 5D
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Theory of Reversibility. Theory of Irreversibility.
Hence for a steady field For any field, steady or otherwise,

B, = 4x (VBCO — 2CHSCO) . (16). b, = 4o (VBEO — 2CHSKO) . (164)
and if this is the only part of B for a steady field, | and if g is the only ferm in @ containing H, we
we have have
0=S8VB, =4xSV (VBCO —20HSCO) . . (17). | 0= 8Vh, = 4xSV (VBKe — 20HSK0) . (17a).
0 = [SUwB,Juys = 4 [SU» (VBCO = [SUwb,]urs = 4= [SUv (VBKO

— 2CHSC8) Jvys . . . (18). — 2CHSKO) Juys . . . (18a).
The following equations will be explained The following equations will be explained
below :— below :—
o =0 (0PJdo — dP/do) . . (19). o= — (2A +0dAJdo) . . (194).
M=0[Pl..y . . . . . (20). H=0[Al..p . . . . . . (204).
a(mjo)  [o— 0P)]us y d (1106) _
4o + _,._._A._(),,,,_,,,,,_ = e (ZI) déA + 0 [(i]u-—b =0. . . (211\).

e j S dpll, = — JZ (11/0) @0 ]‘
(22). ’ Lo (224).

B=— js dpT, = ﬁ (11/0) do L
0 | ; 0
=1I —1II, +J’9 [6— GPO:]a_bd@ J =11 — 11, +j‘0 [o]u—sdO b

Contributed to equation (27) § 55 we have

¢/ = 2m~18Dw0.x(Lx" . . (23).
Hence, for a steady field,

¢ = 2m~1SCam 0 . . (24).

83. Before discussing these equations in detail, it will be shown how in the theory
of reversibility certain very important restrictions must be imposed on the generality
of = as a function of 6, ¥, and H, in order that known experimental facts shall not be
contradicted. These restrictions seem, for the most part, to depend on the particular
form of theory adopted in this paper; but as the particular features of the theory
which are thus involved are held by many physicists, it is of interest to notice exactly
what part of our fundamental assumptions causes the restrictions. The direct cause
of the trouble is the equation B = 4#zVI. Now, it will be remembered (§ 16 above)
that this equation flows from the assumptions (1) that / contains H and not B
explicitly, and (2) that 4#C = VVH. If, then, it can be proved experimentally that
the consequences of the vestrictions developed below {(the chief of which is that
thermomagnetic phenomena involve dissipation of energy, and that a part of the
thermoelectric phenomena do the same), are contrary to fact; one or both of these
assumptions must be relinquished. Thus, perhaps, in this unexpected quarter, will be
found a practical test of the truth of Maxwrrt’s fundamental assumption 470 = VVH,
The consequences of relinguishing either of the above assumptions would probably be
much the same, since it would lead to the physicist being compelled to recognise with
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Professor J. J. Tmomsox [‘Applications,” § 17 (4)] magnetic coordinates independently
of electric coordinates. It is interesting to note in this connection that Professor
J. J. TromsoxN (ibid., § 59) working on somewhat different lines from this paper, has
also found that thermomagnetic phenomena have a distinct bearing on the equation
47C = VVH. His conclusion is that this equation must be given up, and that
instead we shall have

VVH = 47C + (47/3) B (68Vd — SOV . d),

B being here assumed to be a scalar. He assumes that thermomagnetic phenomena
are reversible.

84. The first equation that challenges attention is (16). It might be thought that
it was a truism that B should remain constant in a steady field. This, however, is
not the case. If the steady increase of B implied by this equation does not produce
a steady increase in some physical quantity which can be measured directly, the field
will remain steady in the ordinary sense though B increases. Now the physically
measurable phenomena depending on B can be conveniently divided into three groups,
(1) the stress at the point ~— which leads to mechanical phenomena capable of measure-
ment, (2) the effect it has in modifying the value of H at all points of the field —
which again leads to mechanical phenomena capable of measurement, (3) its effect on
the induction of currents. As to (1) it is certainly true that in many instances above
B does occur in the expression for the stress at a point, but this is in the case of
solids purely a mathematical result. By equation (27) § 55 we see that the rate
of variation of B will in general have no effect on the stress at a point. With regard
to (2) the question must be asked, how does the value of B affect the values of H, C,
&c., at points other than that considered? The answer is — solely by reason of the
equations SVB = 0, [SU»B],,, = 0, where it must be remembered B is an explicit
function of H, €, &c. If then the rates of variation SVB [SUwB],,, due to g are
zero, the steady increase of B, will not produce a steady increase of H, €, &c., at any
point of space. But these conditions are insured by equations (17), (18). Hence we
see that B, need not cause time variation of any mechanical phenomena. As to (3)
the only electric effect of B (due to — A in E) is one which remains constant so long
as B remains constant, and, therefore, does not affect the steadiness of the field.
Hence equation (16) presents no difficulty.

Equations (15), (17), and (18), however, do present very formidable difficulties.
It has been stated that the influence of B on the electromagnetic quantities of the
field is due to the equations SVB = 0, [SUvB],;;, = 0. It must now be added that
the manner in which it thus affects the field depends on the form of its expression in
terms of H, C, &c. Now unless the principal term in B is one depending on H only,
the behaviour of the body in question would not at all approximate to the magnetic
behaviour we know that bodies exhibit. TFor instance, we know that bismuth
always bchaves very approximately as if it were non-magnetic. This requires that

5D 2
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the principal term in B’ should be p,H. It is needless to say that this will not in
general be the case if B involves D. In fact, in a steady field, the only conditions we
should be able to assert that B imposed upon the field would be those which resulted
from equations (17), (18), which do not contain u,H’ at all.

85. The conclusion we are bound to come to is that on the present theory there
must be no term in ! which will result in zVI containing D. Thus the thermo-
magnetic effects must be left to the theory of irreversibility.

It might be thought that all difficulty would vanish if, in g, instead of D we substi-
tuted d, since this would involve terms in e similar to those given above for E and
since B = — e. This, however, is not the case. No term in e can affect steady
currents. The equation E 4 e = 0 determines the value of d but does not affect the
value of €. Again, since in equations (18) (14) we should have ¢ instead of C, we
see that no thermal effects would, owing to g, occur in a steady field.

86. None of these difficulties and restrictions are met with in the theory of
irreversibility, 'We shall find, however, that the thermoelectric consequences of
that theory are inconsistent with known facts. Both theories, therefore, are assumed
as true in part. :

In connection with thermoelectricity it is necessary first to establish equations (19)
to (22) and (194) to (224). In these equations the notation adopted is that of
Professor CHRYSTAL'S article in the ‘Encyc. Brit.,” 9th ed., vol. viii., p. 97. He
there considers a circuit of two unstressed isotropic metals @ and b, one of the
junctions being at temperature 0, and the other at temperature 6, The positive
direction round the circuit is taken as that from the metal @ to the metal b at the
junction 6. II, o* are the PELTIER and THOMSON effects at the temperature 0, and 11
the PrrriER effect at the temperature 6, K is the electromotive force round the
circuit due to thermoelectric effects.

To consider such a case as this, B and C are, of course, ignored, and A is supposed
a scalar. For the future, in order to distinguish more clearly between the theories,
P will be substituted for A on the theory of reversibility. It is necessary now to
distinguish between 9/00 and d/df. The former denotes differentiation when 6, ¥
are taken as independent variables. Now in all the commoner experiments on
thermoelectricity, different parts of the circuit are not similarly strained, but
similarly stressed. This may be taken account of by regarding ¥ as =2 function of 6.
Regarding it as such d/df denotes total differentiation with regard to 6.

87. o, the Tmomson effect, is defined by saying that the heat *“absorbed” by the
metal between two sections at temperature 0 and € 4 df, while a unit quantity of
electricity passes in the direction from the first to the second section, is odf, or the
rate at which heat is absorbed in this part equals the rate at which electricity is flowing

* There seems no danger in using o here for this scalar, though in the rest of the present paper it is
taken as the type of an intensity (vector), nor in using K here for the electromotive force round the
circuit, though in the rest of the paper it stands for intrinsic energy. ‘
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in the assigned direction X odfl. Consider an elementary (generally oblique) cylinder
whose generating lines are parallel to C or K and whose faces are coincident with the
isothermal surfaces 6 and 6 + dfl. Let dp be the vector in the direction from the
section 6 to the section 0 + df, representing a generating line, and d3 the vector area
of either face, drawn inwards at the section 6 and outwards at the section 0 4 d6
(fig. 2). The rate of ““absorption” of heat means the rate at which energy dis-
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appears as heat (positive when it causes full of temperature) and appears as some
other form of energy, in the present case that of ¢electrical separation.” Taken per
unit volume of the standard position of matter this =6 X what is contributed to
the left of equation (35), §40. [The truth of this statement should be clearly

recognised. The principal term on the left of equation (85), § 40, is cf/8 where ¢ is
the capacity for heat per unit volume. Any other positive term contributed to this

side will therefore tend to render 6 negative.| Hence the rate of absorption of heat
per unit volume due to the terms now under consideration will be 4 the expression
on the right of equation (13), § 82, and — the expression on the right of equation (134).
Putting = = the scalar P or A, and noting that SVC = 0, and that for a steady field
SVK = 0, we see that on the theory of reversibility the rate of absorption of heat
for our element — Sd3dp of volume is

6 (— P,SCVO + SCVP) (— SdZdp)
and on the theory of irreversibility
(2ASKVO + OSKVA) (— Sd=dp).
Now VP =V0 . dP/df and VA = VO . dA/df, and since C is parallel to dp, these
two may be interchanged in the expressions just given. Thus the rates of absorption

of heat on the theories of reversibility and irreversibility respectively, are

— 6 (— 0P/o0 + dP/db) SdpVOSC ds,
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and

— (2A + 0 dA/dB) Sdpv oS ds.

But the rate of absorption of heat also == o df X the rate of flow through the element
from @ to 0 + 0
= o dpVOSC d3.

Equating these different expressions for the same quantity, we get equations (19) and
(194).

Equations (20) and (204) are obtained in an exactly similar way. It need only
now be said that from equation (14) the rate of absorption of heat at an clement of
the boundary of the metals @ and b [fig. 8] is

O[PSC ds], ., = — 0[P],_, B¢ d,,

and also that by the definition of the Perrier effect Ii, it is = 11 X the rate of flow
from the metal ¢ to the metal b
= — 1I8C d3,,

from which equation (20) follows. Similarly for equation (204). Equations (21) and
(214) are easily deduced from those now established.

88. In connection with equations (22) and (224) 1t is advisable to make what may be
looked upon as a digression, to examine whether, on the present theory, we have
a right to identify the line integral of any part of # round a circuit with what, in the
laboratory, is known as the electromotive force of the particular kind round it. To test
this, we must see whether the total line integral of REK round the circuit == what is
called the whole resistance of the circuit X the whole current.

In equations (29), (31), § 50 occurs a scalar 7 + Y or » which, unlike the other
terms in the equations, does not depend directly or indirectly (as is the case with
dA/dt 4 a) upon the form of lor z. Consider now any closed curve which, if it anywhere
crosses a surface of discontinuity, passes, we shall suppose, from the region a to the
region b. Then, in the expression — [ SE dp — Z5E,Uv, this unknown scalar does not
appear as cau be easily seen by equations (29), (31). Before taking this line integral,
remove RX to the left of equation (29),§ 50, keeping all the other terms on the right.
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It 1s the line integral (tncluding the terms contributed by SSEUv,) that thus appears
on the right, which is ordinarily called the total electromotive force round the curve.

Let us examine whether this statement is consistent with the one above about
whole current and whole resistance. Suppose the motion steady so that K obeys the
laws of incompressibility. Consider an infinitely small tube of flow, and let this be
the line along which the integral is taken. Let ¢ be the whole current flowing along
the tube. Consider an elementary right section of the tube of length Tdp, and cross-
section Tds. Thus

K = cUK/Tds, dp = UKTdp,

and, therefore, the part contributed to the integral — [SdpRK by the element in
question is

— ¢SUKRUK. Tdp/Tds.

If then we choose to define as follows: (1) — SUKRUK = the specific resistance
of the body at the point, (2) specific resistance X Tdp/Td% = the resistance of the
element, (3) the sum of the resistances of all the elements = the whole resistance of
the tube, we shall have

— [SdpRK = current flowing along tube X whole resistance of tube,

or
conductivity of tube X (— [SdpRK) = current flowing along tube,

which defines the conductivity as the reciprocal of the whole resistance. Now split
any finite tube of flow into an infinite number of such elementary tubes, call the sum
of the conductivities of the elementary tubes the whole conductivity of the finite tube,
and call the reciprocal of this last the whole resistance of the finite tube. We shall
then have that the mean of the values of — [SdpRK for the elementary tubes = the
whole resistance of the finite tube X the whole current along it. All this may, I
think, be said to be in complete agreement with the ordinary theory, but it serves to
call attention to the fact—important in connection with the longitudinal effect
mentioned in § 79 above—that anything which interferes with the ordinary lines of
flow will alter the apparent resistance.

89. To return to our immediate purpose, we are now at liberty to say that the line
integral of any term contributed to the right of equation (29), § 50, round a closed
cireuit implies an equal electro-motive force round the circuit in the ordinary sense.
Tquations (22) and (224) are easily seen to follow.

Comparing, now, equations (20), (21), (22), (204), (214), and (224), with equations
(4), (5), (6), and (7) on p. 97, vol. 8, * Encyc. Brit.,” 9th ed., we see the results of the
theory of reversibility only differ from the ordinary theory in having o — 6P, in place
of o, while those of the theory of irreversibility differ widely.
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Thus the former theory explains thermoelectric effects satisfactorily, But we shall
see that we cannot suppose A zero. Hence we must on the present theory suppose
that the main thermoelectric effects are reversible, but that there are subsidiary
irreversible ones that with the present means of experiment it would be practically
impossible to disentangle from the former.

90. The detailed comparison between the two theories is most clearly made by
means of the thermoelectric diagram. Irom equation (22A) we see that on the
theory of irreversibility the thermoelectric power, instead of being T1/6, is — T1/6. To
any one who is acquainted with the ordinary thermoelectric diagram, the following
statements will be sufficiently obvious from the accompanying figures :—

Theory of Reversibility. Theory of Irreversibility.
Abscissa = 0. Abscissa = 0.
Ordinate = — thermoelectric power with respect Ordinate = — thermoelectric power with respect
to lead to lead
0 0
B = the area marked in fig. 4. B = the area marked in fig. 4.
o — 0P, = P8 of fig. 5. o= — 3PR of fig. 5 = — 2PQ — PS.
II= + area marked in fig. 6. Il = — area marked in fig. 6. ‘
I — I, = + area marked in fig. 7. II — I, = — area marked in fig. 7.
jg [¢ — 6P,]u -3 d0 = — arca marked in fig. 8. J.e [6]a3 d0 = + (area marked in fig. 8).
0 0
+ 2 (area marked in fig. 4).
= + (area marked in fig. 7).
+ (area marked in fig. 4).

Tig. 5.

2 4

[In this figure OQ is the
axis and QS = 3QR.]

Fig. 6. Fig. 7.
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The following results may be noted :—

No series of experiments confined to determinations of the electromotive forces
resulting from differences of temperature at the junctions of thermoelectric circuits comn
distinguash between the two theories.

On the theory of reversibility the. following statement is true; on the theory of
vrreversibility the contrary is true. In o thermoelectric circuit of two metals, if o
galvanic current be passed across the junction wn the same direction as that of the
current that would be produced by heating the junction, the effect vs absorption, and
vice versd [Tair’s ¢ Heat,” Ist ed., § 192]. In many cases this statement has been
verified experimentally, and no one, I think, has ever asserted that he has obtained
the contrary. Hence the main thermoelectric effects cannot be explained on the
theory of irreversibility. ‘

On the theory of reversibility o — 6P, takes the place of o in the ordinary theory.

91. This last statement is of importance in connection with a difficulty purposely
passed over till now. By equation (23) § 82 it appears that D enters into the
expression for the stress unless P be independent of the strain. Thus the stress
depends on the electric history of the substance. This involves difficulties of two
kinds. First it shows that in all bodies for which P is not thus independent the
stress would probably be widely different from what it is ordinarily assumed to be.
This, however, would not affect the apparent mechanical effect on a conductor as a
whole since, as already noticed, that effect depends upon the stress just outside the
conductor, w.e., the stress in the surrounding dielectric in which D does not increase
indefinitely. But one would think that its effects on the mutual behaviour of
different parts of a conductor would have been observed. The second difficulty is
connected with equation (24). It might be thought a truism that ¢’ should remain
constant in a steady field. But as with B, (§ 84) this is not the case. Wesawin §75
that so long as any term which contributes to ¢’ contributes zero to ¢'A" and [¢'Uv'], .,
it produces no effect on the motion and strains of bodies, that is, no mechanical effect
whatever. The conditions for a sveady field, so far as stress is concerned, are,
therefore, that ¢'A" = 0 and [¢'Upr],,, = 0. If then ¢ is the only term in i con-
taining D, equation (24) gives for a steady field

m™80w 0 . xAx'A" = 0, [ 180w ® . xTx'Uv' ], =0 . . . (25)

To see what may be the approximate effect of this, let us assume = to be a scalar
(P) whatever be the strain, and let the scalar be a function of the temperature and
the density of the body only. Then

é, = 2m™18CO . Xqu’X/' oP/oD,’
= 2D, m™'SCe . xd (m™1) x’. oP/oD,, [§ 49]

= — D,/S¢'®’. 9P/oD, [(10) § 54 and IL. § 8.
MDCCCXCIL—A, b E
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From the first of equations (25) it follows that the scalar SC'® D,/ 0P/0D,’ must
be constant throughout any single conductor; and from the second, that it must be
constant throughout any number of conductors in contact, and if the conductors are
anywhere bounded by a dielectric, i.e., wnvariably, this constant value must be zero.
Hence with present assumptions SC'®" must be zero everywhere in a steady field.
[ This is not quite accurate since if P, regarded as a function of D, is a maximum or
minimum, 0P/0D,” = 0. It does not seem hopeful to pursue this supposition how-
ever.] This presents no difficulty in ordinary cases, since € and ®—to drop the
dashes as no longer necessary—would generally be very approximately at right angles
in any case. If, however, we contemplate such a case as the attempt by ordinary
means to force a galvanic current and a stream of heat in the same direction through
a conductor, some very curious consequences are involved. The most obvious of them
seem to be that both the heat and electric apparent conductivities would be largely
altered. That no such lorge alterations in these physical quantities have been
observed I believe to be the case. These difficulties may be wholly imaginary. If,
which seems on other grounds most probable, P is not even approximately a scalar
when the body is strained, we should not be able to deduce that SC® was even approxi-
mately zero. In this case, the adjustments brought about in a steady field of the
kind just contemplated by reason of the equations (25), would probably be mainly
strain adjustments that would not cause € and ® to vary much, if at all, from paral-
lelism. These strains, of course, might very well have hitherto escaped detection.

These difficulties are, however, sufficiently serious to make it necessary to consider
the results of assuming P independent of the strain. The most important of these
results are easily seen to be (1) that, although the connections between the Prrrier
effect and the electromotive forces in a circuit of different metals whose junctions are
at different temperatures would on the theory of reversibility be the same as is usually
supposed, yet there would on that theory, taken alone, be no TromsoN effect [equa-
tion (19)], and (2) that there would be no thermoelectric effects in a circuit of a single
metal whose various parts were variously stressed. These two, then, would have to
be explained on the theory of irreversibility, and no quantitative connection need be
expected between the THOMSON effect and the main thermoelectric effects. '

92. These difficulties seem to me not to be confined to the particular form of theory
developed in this paper. For instance, there seems as much reason to suppose
Professor J. J. THOMSONS 07y 0, 0, (¢ Applications,” Ist ed., §53) to be independent
of the strain as the present P. And I may remark in passing that similar statements
may be made with regard to the C (¢bid., §43) introduced to explain the HaLu
effect. [By §84 above, it is obvious that on the present theory it is impossible to
explain the Harn effect by such a term owing to the results other than the Hary
effect that would ensue from the term.]

93. Our chief’ conclusions, so far, may be thus summarised :—
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(L) If P be assumed to be dependent upon ¥, the theory of reversibility suffices to
explain all the known experimental facts of thermoelectricity.

(2.) If; as there is some reason to believe, P be independent of W, the main. thermo-
electric effects must be explained on the theory of reversibility, but the TioMsON effect
and the thermocelectric effects observed in a circuit of a single metal dyfferently stressed
in different parts must be explained on the theory of irreversibility. In this case
there 1s mo such connection between the THOMSON effect and other thermoelectric effects
as is usually supposed.

(3.) On the present theory it is impossible to explain thermomagneiic phenomena
by the theory of reversibility.

94. There is little to be said with regard to the thermomagnetic phenomena them-
selves, as our knowledge of them is almost confined to what is expressed by equations
(2) and (94). It is necessary to remark, however, that the C of equation (2) may be—
probably is—not the main cause of what has been described in §79 above as the
longitudinal effect, since an apparent longitudinal effect would be caused (§88 above)
by any interference with the lines of flow of electricity, and by the variation in the
resistance due to any cause. More than one effect of these kinds will be noticed
below. ‘ .

But, of course, the existence of B and C may involve results of a kind other than
thermomagnetic, which are practically measurable. Besides equations (2) and (94),
B and C occur in equations (184) to (184). Equations (13a) (144) do not require
notice, since in the present state of accuracy of experimental knowledge of thermo-
electric quantities the influence of B and C in these equations is negligible. With
regard to equations (164) to (184), we can trace approximately the effects of B and C
in one important class of cases.

95. Suppose we have a plate of uniform thickness (small) in which a current is
flowing placed in a strong uniform magnetic field. On account of the current, of
course, the uniformity will be disturbed, but only slightly if the strength is great
enough. Outside the plate (except in certain conducting wires) we assume that there
is no current. Hence by equation (184) we see that at every point of the boundary
of the plate '

SU» (VBK® — 2CHSK®) =0 . . . . . . . (26).

Equation (174) gives by equation (4) § 5 for any portion of the plate
[[sas(VBK® — 20HSRO)=0 . . . . . . . ()

This is the form in which can be most easily discussed the effect of equation (174).
Let the region to which equation (27) refers be taken as a cylinder, one face of the
cylinder being in one face of the plate, and the parallel face somewhere inside the

51 2
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plate. Since the plate is thin, we may suppose the faces of the cylinder large com-
pared with the curved surface, and may, therefore, neglect the portion contributed to
the integral of equation (27) by the curved surfice compared with the rest of the
integral. Now by equation (26) the part of the integral contributed by the face of

the plate is zero. Hence putting + for Ur we have, approximately, at any point of
the plate ‘

S: (VBK® — 2CHSEK®) =0 . . . . . . . (28).
Assuming B and C to be scalars, this may be put in the form

SK-1'®=2CB~'SHSK"'e . . . . . . . (29).
Now assuming, which will be approximately—exactly at the boundary——-‘-true, that

¢ is perpendicular to K, we have

0= — 150 + KSK™'0 4 KK~ 6.
Hence by equation (2), § 81,

(0 + 48i0) = (A — CH?) (RSK~' 0 + (KS/K~10)
+ B(VEHSK-'© + ViKHSiK~' @),

Let us split this vector up into its components parallel to the three vectors K, 7, and
VKH. For this purpose notice that since K is perpendicular to 1,

V:KH = — KSH + SKH

K = (VKH -+ «3KH)/S/H.
Thus

= (@ + i9i8) = K {(A — CH?) SK~' © — BS/K~! 0SiH}
+ iK1 @ {(A — CH?) SiKH/S(H + BSKH}
+ VEH{(A — OH?) SiK-) ©/Sil + BSK-'@} . . (30)

from which, by substituting for S;K~!® from equation (29), we obtain

@ (© + 8i0) = B-)SK~TO[KB {A — C (H? + 2S%H)}
+ 42C {(A — CH?) SiKH + BSKHS/H}
+ VEH {2C (A —CH) +B%]. . . . . . (31).

96. This transformation is not likely to give us clearer ideas of what takes place
when a stream of heat is made to flow in the plate which is large compared with the
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streams due to ordinary electric resistance and thermoelectric phenomena. The
original form of = is more suitable for that purpose. We assume then that the only
heat effects are due to purely electrical causes. In this case, if the faces of the plate.
are thermally similar, we may assume that Si® has opposite values at points situated
symmetrically on opposite sides of the plane midway between the faces of the plate.
The effect of =Si® will be then merely to make the current stronger or weaker in
the middle of the plate than near the faces, and, therefore, to increase the apparent
resistance of the plate. We have already seen that unless P (assumed invariably to
be a scalar in this connection) be independent of the strain, SK=1@ is zero, so that the
whole expression on the right of equation (31) is zero. If, however, P be independent
of the strain, the term in VKH in equation (31) would indicate a Ha1L effect. The
presence of SK™'@ in this term, however, serves to show that probably this is not
the true explanation of the HarLw effect.

The Harn effect may be explained by saying that there is an electromotive force
hVKH, where h may be called the coeflicient of the Harr effect. It has been found
experimentally that this coefficient is by no means independent of TH—that, in fact,
in certain cases it changes sign when a definite strength of magnetic field is reached.
The above work indicates how, on the present theory, we may seek to explain such
an effect. For this purpose it must be remembered that equations (30) and (31) are
only true if ¢ is the only term in & which involves H.

97. Let us now assume that the electric resistance is a function of H, and let us
incorporate in g the term of x thus depending upon H. We must add a term
— SK7K/2 to the former value of g ; » being a function (of Class IL of § 9) of 9, ¥ and
H. For the sake of definiteness give » the form — bSHcH, where b, ¢ are functions
of the same classes as B and C respectively. Thus, as can be easily seen, to get
7" or v’ from r we have merely to change b, ¢ and H into ¥, ¢, and H' or 0", ¢”, and
H" respectively. Equations (84), (94), (184), and (16A) must now be changed to

g= — SKz® + SKOKSHCH/2 . . . . . . . (32),
E,= —=® 4+ 0ESHH . . . . . . . . (33),

of, —.—_- —SK(2[0] 4+ 8[1] 4 4[2]) ® 4 2SKIKSHcH — 0SK,=,V, . (34),
b,/4m = VBE® — 2CHSK® — cHSKLK. . . . . . (35).

Hence, in place of equation (28) we now have

St (VBK® — 2CHSK® — cHSKbVK) =0 . . . . . (36).

Assuming B, C, b, ¢, to be all scalars, and putting, as is permissible in this case, b = 1,
instead of equation (29) we have



766 MR. A. McAULAY ON THE MATHEMATICAL

SIK™1® =B~ SH.(2CSK~'e@+¢) . . . . . . (37),
and in place of (31),

'E, — %0 = — B-1[KB {SK-10[A — C (H? 4+ 28%H)] — ¢ (H? 4+ S%H)}
4 i (2CSK10 4 ¢){(A — OH?) S/KH + BSKHS/H]
4 VEH {(2CSK~16 + ¢) (A — CH?) + BSK—10}] . . . . (38)

which simplifies when SK~!@® is zero (which it certainly approximately is in the
experiments made to determine the coefficient of the HaLw effect, whether P be inde-
pendent of ¥ or not) to

E, — wiSi® = B~1¢[KB (H? + S%H)
— i {(A — CH?) SiKH + BSKHS(H}
~VEEMA—CH)] . . . . . . . . . (39

Owing to the term in ¢ on the right as well as the term in ¢ on the left, there may
be an apparent increase of resistance. The term in K shows that there will also be
an increase — ¢ (H® 4 S%H) in the resistance. The term in VEKH shows that the
present assumptions lead to a HALL effect, whose coefficient = — B~!¢ (A — CH?).

With regard to the new term 2SKOKSHCcH in equation (34), it should be noticed
that since it is quadratic in K, it would have no influence on the apparent THOMSON
effect, but only upon the apparent resistance as measared by heat effects.

That we can explain the HALL effect on the present theory is of some interest,
because, as remarked in § 92 above, we cannot explain it on the present theory in the
ordinary way. Nor can we hope to explain it by the term — Ve in E [equations (29),
§ 50, and (20), § 85] for Vi{VVKH = V{V{H = —2f1, whereas ViV (V) = 0. It
should be noticed that the difficulties in the way of explaining the Harw effect by a
term — C'SCDH/2 do not apply to explaining the magnetic rotation of the plane of
polarised light, since this is equally well explained by substituting d for D.

98. One effect of ¢ still remains for consideration. Tt is necessary to consider it if
only to show that it leads to no results large enough to be experimentally tested. It
also helps to show how the various interferences with the lines of flow, several times
mentioned akove, are mainly brought about.

In writing down equation (94) it was mentioned that E, did not contain the part
of a due to g. We have indirectly taken account of the effect of a, in part, by the
considerations just given in leading up to the explanation of the HaLL effect. We
have not, however, thereby taken full account of a, To do this in the manner
illustrated above, we should require to study the effect b, had in modifying the whole
electromotive force instead of the part E, We proceed then, to a more general
examination of the effect of the term — a, in E.

We will now drop the suffix ¢ from a and b, since we shall not suppose « to contain
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H except by reason of the term g, so that b, of equation (35) now stands for the full
value of b. SVa and [SUva],,, are arbitrary. Let us, since it does not affect any
physically measurable quantity, assume them both to be zero. Since b = VVa,
[Vd=al,,, = 0, if we considered an analogue in which b stood for an electric current,
4ma would be the magnetic force due to the currents in a space containing no magnets.
This analogue will serve to give us a very fair general idea of the effect of — a in E.
Since [equation (35)] every term of b contains K, b will be confined to conductors
where there are conduction currents. Thus, in the same conductor we shall have the
“real current” and the “current of the analogue.” The current of the analogue
may be disposed with reference to the real current in one of three ways. It may be
mainly parallel to the real current, or it may circulate round the real current
mainly at right angles to it, or it may circulate round it spirally. In the first
and third cases we see by the analogy that there would be an electromotive force due
to a in the general field approximately parallel everywhere to the part of the magnetic
force due to the real current. In the conductor itself, then, the resulting electro-
motive force would cause the real current to move spirally, and would, therefore,
apparently increase the resistance. In the second and third cases we see by the
analogy that there would result effects due to the local state of affairs, so that where
b was large there the effect of a on E would be large. In a case of this sort we should
have to examine further before we could say what the local effect would be.

It is easy to see that in the experiments for determining the quantities con-
nected with the HarL and thermomagnetic effects, the second of the above cases
very approximately represents the state of affairs. For, by equation (35), it is only in
the plate, where ® or H is very large compared with the rest of the circuit, that b
will have a sensible value. Hence there must be a strong local current of the
analogue, that is, a current which does not go round the circuit parallel to the
real current.

It follows that the main physical effects of a are those that were considered in
dealing with the HALL effect.

E. Contact Electromotive Force.

99. Our knowledge of this is not very accurate, but, besides the fact that contact-
force certainly exists, and that it has been in numerous individual cases measured
with fair accuracy, the following seems to stand out with considerable certainty.

If the (apparent) electromotive force from one material, a, to arother, b, when they
are in contact be denoted by a | b, then the equation

alb+bletecla=0 . . . . . . . . (1)

is true if all three materials are conductors, but is not true if they are not all
conductors.
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This force cannot apparently be explained by any term in [ of the kind we have
hitherto supposed 7 to contain. Suppose, then, I to contain a term* SdaA where ¢ is
of the same class as A or @« [equations (5), § 81.] Thus ao is an intensity, and a7 a
flux, a, being the conjugate of «.

The portion of L contributed by this term is [[[SdaAds, or [eq. (4), § 5], [[Sdads.
Hence the effects of supposing ! to contain a term SdaA are identical with those of
supposing [, to contain a term [SdaUv], , ,.

So far as electric phenomena are concerned it is quite easy to see the effect of this
term. In place of equations (31), § 50, and (2), § 57, we shall have

E,=[Uv],,,=[aUvl,., . . . . . . . . (2),

Wy =1Tlalo—y « « « « .« o o . . (3).

100. Although this term involves a contact force it does not explain the known
tacts, since, as can be easily seen, the contact force here obtained is such that
equation (1) would be invariably true. We seem then to be driven to the conclusion
that to explain contact force, [, cannot any longer be assumed to be zero.

Adopting the suggestion of Professor CHRYSTAL, ¢ Encye. Brit.,” 9th ed., vol. 8, p- 85,
we will assume that there is no real contact force between conductors. This simplifi-
cation is not, of course, necessary on the present theory, but the simpler the
assumptions—so long as they are not intrinsically improbable—the better. Professor
CrRYSTAL shows that the assumption serves to explain all the known facts, the
apparent contact force between conductors being explained by the difference of their
contact forces with one and the same dielectric.

We now assume that [, contains the termt SaUw,[d],,;/2 where @ is of the same
class as before, but now depends on ¥,, ¥; and 6, and where of course the suffix ¢ has
nothing to do with the linear vector function «. It is assumed that « is zero for a

or, if @ be a scalar,

surface of separation of two conductors.
In place of equations (2), (3), we now have

E,=[Uv],ys=0alUp. . . . . . . . . . (4

[Ves=a . . . . . . . . . .. (5)

* Tt may be asked, Why make the differentiations act on  as well as d, why not assume the term to
be Sd;aV, ? The answer is that this leads to a more complicated result, namely (1), to the same contact
force as the term chosen, (2), to a term — aA in E, and (3), to a stress which involves the space deriva-
tives of d. It is best to assume, if possible, a term which involves what we know to be true and
nothing more.

+ Perhaps it would be better, as more general to suppose 4 to contain the term [SxUr d],, s where «
is of the same class as @, and «; is not merely characteristic of the substance b, but depends ou both the
substances hounded, ¢.e., where, in general, #,_j + a)¢ + @, is not zero. Equations (4), (5), (6) will
still be true if we pub & == x,_
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It might be thought that equation (4) could not be true in general unless o was
a scalar in general. This, however, is not the case. From equation (4) it certainly
follows that VUwvaUr =0, but this, by virtue of the dependence of @ on strain is merely
an equation of condition satisfied by the strain. The equation [vUv],,, = aUpy, may
indeed be written

[v]4eo=—UwaUr . . . . . . . . . (6),

which is, of course, more general than equation (5), since here a is not assumed a
scalar. It may be noted that V d3'a’ d3’ = myV d=a d3, so that the two conditions,
VU/a'Uy' = 0 and VUpaUr = 0, are identical.

101. Itshould be remarked here that on the present theory the term just introduced
would have no thermal effect in steady fields, and, therefore, no connection with the
PerriER effect. (See § 85 above.)

We have been obliged to suppose /; no longer zero. Before discussing the modifica-
tions this entails in the general results above, the last application in the present paper
of those results will be made.

This is the place where it would be proper to discuss electrolysis in connection with
the present theory. This I do not propose to do, because the mathematical machinery
of this paper would require some important modifications to enable us to deal with
such subjects as diffusion, the motion of the ions, &ec., and because the subject is a
very large one, and would, perhaps, unduly extend the length of the present paper.

F. The Transference of Energy through the Field.

102. On the present theory, in which the principle enunciated in equations (24),
(25), § 86, required strong confirmation, it was necessary to show that it agreed in
every particular with the generally accepted views as to frictional forces being
derivable from a dissipation function in Lord RAYLEIGHS sense, and also with the
much more certainly established truths treated of in the theory of conduction of heat.
The only way to establish this last seemed to be to show that as a result of the
principle there was a time flux of intrinsic energy, one term of which was what, in the

“theory of conduction of heat, is called the time flux of heat. This led to the necessity
of finding the time flux of intrinsic energy in general. We are thus brought on to
ground which has hitherto been regarded as belonging exclusively to Professor
PovnriNg—the transference of energy through the field.

103. Let us now examine how far the results of the present theory are consistent
with those of Professor PoynTiNg. Let L be a flux such that

E——P,,:”bSLdE R )

MDCCCXCIT.—A. 5 ¥
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so that L may be called the time flux of intrinsic energy. By Proposition VIII.,
§ 10,
(¢ + @) d=' = x (¢ + @) d=.

Hence we see by equation (25), § 49, that

L= — (¢ + ®)xp +vC — V(A4 a)H/dr — (0V\ 4 0,Vz) . . (2

Now, (‘ Phil. Trans., 1884, Part IL, pp. 343 to 349) Professor PoyNTING's result
expressed in similar notation would be (calling the time flux of energy P)

P=—(p+ @) xp — V{Vo+ (A+a) Hdr — (VN + 6,Vx). . (3).

It is scarcely necessary to remark that we have here generalised his expression™ by
the insertion of the terms — (¢ 4+ @) x'p' — VaH/drm — (0oVA + 0iVz) and have
substituted for his E what he means by it, namely, —(A + Vo). It might be thought
at first that this is not quite what he means by E since he incorporates in it terms
depending on the motion of the body with reference to the lines of magnetic induction.
Remembering, however, that equation (6), § 60, and the equation E, = — (A + Vo)
are identical, it will be seen that these terms have been here incorporated.

104. The direct interpretation of equations (2) and (3) is, of course, widely different.
Let us see if they have the same physical significance, that is, whether they lead to
the same rate of increase of intrinsic energy in any finite space.

For this purpose it must be asked whether or not [[,S (L. — P) d%, is zero. Now

dr(L—P)=4mC+ VVoH=VV(vH). . . . . . (4)

Hence 47](,S (L — P) d5 = [[,SdSV (vH), or by equation (3), § 5,
47THS(L-—P)dzzfq;sosz N )}
b b

where the line integralt is to be taken over all lines of discontinuity on the true

* T only say—generalised his expression—since some such terms as have been added in the text would,
on Professor PoYsTING's own theory, be included in the vector L, defined by equation (1), as the time
flux of intrinsic energy. The result of the present paper is, however, in all strictness much more
general than his, since it has not among other things been assumed that all the bodies in space are
isotropic with reference to specific inductive capacity, resistance, and magnetic permeability.

+ It may be well to notice that by the conventions of §5, above, if the closed curve be regarded as
bounding, not the regions of the true boundary, but the part of the surface of discontinuity in the region
of space under consideration, the sign of the line integral must be changed.
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boundary of the region considered, that is, over the trace on that surface of surfaces
of discontinuity. The element dp is, of course, taken twice, namely, once for each of
the two regions of the true boundary which it bounds. Since dp is in the surface of
discontinuity, and the component of H parallel to that surface is not discontinuous,
we see that [SdpH],,, = 0. Hence the part contributed by dp to the line integral
may be written [v],_, [SdpH], or

, v, 5dp H T ()}

If then vis continuous, the line integral is zero. It has already appeared [equation (2),
§57] that if /, is everywhere zero this is the case. Hence, unless /, exist, the
physical results of supposing P to be the time flux of intrinsic energy are identical
with those of supposing L.

If I, exist, we have at present no right to say that on the present theory L may be
taken as the time flux; but in § 111, below, this will be proved. The conclusion is
then that, to explain the rate of variation of energy, Professor PovynNTiNGg's flux P
must be supplemented by a finite flux P, along surfaces of discontinuity in the
potential, where

47P, = [vVWUH],,, =v,, VU, H . . . . . . . (7).

[In verifying the sign of this expression attention must be paid to the caution in the
last foot-note.] This of course is rather an unnatural, though by no means absurd,
result, and therefore I think it better to regard L as, more probably than P, repre-
senting the true time flux of intrinsic energy. Another reason for preferring L to P

is that for a field at rest, 7.e., such that /;', 6, ®, C and ¢ are everywhere zero, L is zero,
whereas P = VHVuv/4m.

In now contrasting Professor PoyNTING’S result with that of the present paper, we
will suppose » continuous. _

105. Very shortly after the first publication of Professor PoyNTiNeg’s paper,
Professor J. J. THomsoN in criticising it remarked (‘B. A. Reports,’ 1885, p. 151).
“ This [Professor PoyNTING'S] interpretation of the expression for the variation in the
energy seems open to question. In the first place it would seem impossible, @ priore,
to determine the way in which the energy flows from one part of the field to another
by merely differentiating a general expression for the energy in any region, with
respect to the time, without having any knowledge of the mechanism which produces
the phenomena which occur in the electromagnetic field ; for although we can, by
means of HaMILTON’S or LAGRANGE'S equations, deduce from the expression for the
energy the forces present in any dynamical system, and therefore the way in which
the energy will move, yet for this purpose we require the energy to be expressed in
terms of the coordinates fixing the system, and it will not do to take any expression
which happens to be equal to it. The problem of finding the way in which the
energy is transmitted in a system whose mechanism is unknown, seems to be an

5F 2
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indeterminate one ; thus, for example, if the energy inside a closed surface remains
constant we cannot, unless we know the mechanism of the system, tell whether this
is because there is no flow of energy either into or out of the surface, or because as
much flows in as flows out. The reason for this difference between what we should
expect and the result obtained in this paper is not far to seek.” He then goes on to
point out® how, so far from P being necessarily the time flux of energy, P 4 VVe
where € is any vector, such that at surfaces of discontinuity [VUve],,, = 0, might
equally well be taken as the time flux of energy. It so happens that (assuming v
continuous) L — P is such a vector, so that the difference between the result arrived
at in this paper and Professor PoyNTING'S is just such a case as Professor THoMSON
warned us to expect.

We cannot then say that either L or P is the time flux of energy, but only that if
we assume either the one or the other (P being supplemented with P,) to be the flux,
the real changes of intrinsic energy will be accounted for. |

106. Notwithstanding Professor THOMSON’S warning, many subsequent writers seem
to have taken Professor PovNTiNG’s theories for established facts. The following
statement of Professor PovNTING especially secems to have grown to be accepted
almost universally as a commonplace truth [ Phil, Trans.,’ 1884, Part IL, p. 861]:—
“I think it is necessary that we should realise thoroughly, that if we accept
MaxwrLL’s theory of energy residing in the medium, we must no longer consider a
current as something conveying energy along the conductor. A current in a conductor
is rather to be regarded as consisting essentially of a convergence of electric and
magnetic energy from the medium upon the conductor, and its transformation there
into other forms.” Now, if we take L as the true time flux of energy, we see that
one way in which we must regard a current is precisely the way Professor PovNTIiNG
denies us, namely, < as something conveying energy along the conductor.” In faet,
from the term vC in L, we see that in this respect, as in so many others, a current and
the potential are the exact analogue of a liquid current and its pressure. Without
doubt, the view that L is the true flux is simpler for steady fields than the view that
P is. This statement is not so obvious—perhaps on the whole not true—for varying
fields. '

Tt is easy to contrast in detail the two views in all the particular cases Professor
PovntiNG considers. This may, therefore, be omitted here.

G. The General Effects of the Existence of L.

107. The general equations above established must now be modified on account of /.
In considering electrolysis on the present theory it would be necessary to suppose
[, to contain D or € or both, as well as d. For the sake of simplicity we shall not

% This is not put quite in the form Professor Trousox puts the case.
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make this supposition. /, will be assumed a function, then, of d,, d,, 6, ¥,, ¥,. As
throughout the rest of this paper, we assume that there is no slipping at the surface.
This leads to a relation between ¥, and ¥,. Let ¢, j, k as usual stand for a set of
mutually perpendicular unit vectors, which are, however, functions of the position of a
point. Let

1=Up, /=0Uv»,/ . . . . . . . . . (1)

J and % are thus parallel to the surface.
We have
Vo = 3iSiViSio + 3 (jSke + kSjw) ¥k

= ZiSiw (x1)*+ 3 (jSke + kSjw) Sxjxk,

where the summation sign implies that ¢, j, & are to be changed cyclically. Since
there is no slipping the strains in the surface of each region bounded are the same or

X = X005 Xk =Xk
Hence, putting

O =V, ,,, =%, _g=[YUr],0,. . . . . . (2
it at once follows that

Vo0 = — 2T'Sww + 20 (YTSjo -+ SAMSkw) . . . . . (8).

Thus ¥, and ¥, can be expressed in terms of the independent variables ¥ and T
That these last are independent is seen thus. The deformation in the neighbourhood
of a point on the bounding surface requires for complete specification a knowledge of
the following three things : (1) the pure strain of an element of the surface, (2) the
displacement of a point in the region o near to the element of surface relative to the
latter when purely strained, (3) a similar displacement in the region b. These three
are independent, and each requires three scalars to specify it—nine in all, the same
number as is required to specify ¥ and T. Thus /, is a function of the variables
d,, d;, ¥ and T.

108. The part of 8l, depending on 8V, and 8V, is — SS¥ULL — SSTLVI,* where
d stands for 3. Put now

* We may dispense with I' altogether thus. Put ¥ + VI'( ) =TI Then with the meaning
of g explained on page 103 of former paper,

2V = Vindg, @ =@ — ViV ( )/2,

%€,  is the pure part, and pV/2 the rotation-vector of gd.
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my = ds'Jds = TdS/ /T3 = mTx' =25 . . . . . . . (4).

(63 = — m L xTly = 3 [aVES () xUv 4 xUsS ( YxaVi) )
¢/ = {6/} rs f

Then it is easy to show, after the manner of § 39, that

81, = m, [S8p, (b 1V, Toss — S8A[V0]ess. - . . . . (6).

To see what modifications must be made in equation (9), § 45, consider first the
first term on the right of equation (6). This contributes to 8L for a finite portion of
space [[SOp, {¢,} Vy'ds’. Put in this V)= — 'S¢’V — V'V, Thus

(881 (g3 vyas = — [[sevysspy (6] vds — [[S8py (93 (FVIVY) .

109. We will anticipate somewhat here, as the effect is a considerable simplification.
The first of the terms on the right involves the vector —S¢'V’.8p’, and this is the
only term involving space derivatives of 8p’ that cannot be transformed into terms
involving 8p’ only. Now the vector coefficient of this vector, like that of 8p" in
3L + 3Q3¢q, must be zero. For — S@"V’.Sﬁ' is the normal space rate of variation of
3p’, and it is clear that we can at the surface change this arbitrarily without changing
8p’ at any point of space. [This cannot be said of the tangential space rates of varia-
tion of 8p, for a change in these causes a change of the same order of magnitude in
8p’ at all points of the surface.] Hence we obtain the equation

=0 . (),

or by equation (5), since ¢’ = mm,~! x' 711,

8).
= [mxlo+r At + ¥ [mxJu—s (VI — 980,VL) = 0 (8)

[mx {ULUv + 3 (VI — USUnVIL)], -, }

The geometrical meaning of equation (7) should be noticed. It reduces the six
coordinates of the self-conjugate ¢, to three. ¢, operating on any vector reduces it to
the tangent plane. It may be said to act only on vectors in the plane and to strain

them 1n the plane.
110. We now have

(881 (g1 vy ds = — If S8p/ 9/ (IVi'V)) d,
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ds’ on the left being taken, as usual, twice, but on the right only once. That we may
substitute S8p,'¢, (v Vi'Vy"), or 88p," [{¢bs'} lors (¢ VI'V)) for [S8p," {3 (¢ VI'V) ]+ Is
obvious, from the fact that the space derivatives of 8p’ involved are only the tangential
ones, which are the same for both regions bounded, because there is no slipping.
The boundary of the surface in question, like the boundary of any volume, must be
supposed to involve not only the geometrical boundary, but also any lines of dis-
continuity on it. With this meaning for the boundary, we have, by equation (3), § 5,

[ [ Sdp) ($/} V) ds' = — 8809, (Vdp) + { I G/ Vivy)ds. . (9).

The geometrical meaning of 7,’V¢'V,’ should be noticed. By equation (3), § 5, we
have

[[ovivyas =[edp . . . . . . .. (o)

from which, by limiting the portion of surface considered to an element bounded by
lines of curvature, it can easily be deduced that

GVIVY =@ T L (1),

where », # are the principal radii of curvature, reckoned positive or negative,
according as the centre of the corresponding curvature is in the region & or b
[¢ = Uy/]. Thus — 4, Vi'V)’, or VZ'V'.7" may be called the vector curvature of the
surface at the point.* o '

Since ¢4 = 0, we see by equation (11) that equation (9) may be written

(8001 13 vy as' = — 8899/ () + ([0 Vi) ay . (1),

' ough this last s1mphﬁccxt10n is not needed for our purposes.
111, We are now in a position to see what alterations /, occasions in the various

equations given above. This may be done in the following semi-tabular form.t
Add to right of 45 (9) -

— [[s8a 72 ds + [[ 88w (@ Vivwy) ds — [889/ (7dp) . . (13).

* Using, for the moment, the notation of Tarr’s ¢ Quaternions,” 3rd edition, §§ 296, ef seq., for p and
dashes, it seems to me that lucidity would be gained by calling p" the vector curvature of the curve at
the point considered. Thus the vector curvature of a curve is a vector whose tensor is the ordinary
scalar curvature, and which is drawn from the point on the curve in question towards the centre of
curvature. By analogy, I would call the vector, drawn from a point on a surface towards the concave
side, and equal in magnitude to the sum of the principal curvatures, the vector curvature of the surface
at the point.

- 4 In what follows “ 45 (9) ” stands for “§ 45, equation (9).”
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Add to 3rd term of 46 (10)

ffa+xyas .. o000 0 ().

46 (11) Unaltered . . . . . . . . . . . (15)
In place of 46 (12) -

N=—10, t,=0 . . . . . . . . . (16).

Add to right of 46 (13)
”p%wm&@w@—ﬁw%vwwqu$www).un

Add to right of 46 (14)
[[sdvr,as [[spda @Vivy)as + [spo/@ap). . . . (18)

47 (15), 49 (17), 50 (26) Unaltered . . . . . . . . . . (19).

Add to right of 49 (18) and 50 (27)
— ¢ (VIVY) .. o oo oL (20)

Besides the equation ¢, = 0, we here have

[ o) e =0 « « v v v . . .. (21),

the suffix e 4 £+ indicating two or more superficial regions bounded by the curve.

49 (19), 49 (20), 50 (28), 50 (29) Unaltered. . . . . . . . . . . (22)
In place of 49 (21) and 50 (30)

&= [aVl]uss « -~ . .« . o . . . . (23).
49 (22), 50 (31) Unaltered . . . . . . . . . . (24)
49 (28), (24), (25) Unaltered . . . . . . . . . . (25),

[since all the new terms added to 46 (14) are clearly accounted for by P,. Tt will
be observed that this statement is true of any term of L not involving a velocity, 4.e.,
of any term which merely contributes to the potential energy].

57 (1) Unaltered . . . . . . . . . . (26).
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In place of 57 (2)
['UUV + dVl8]c¢+b =0 . . . . . . . . (27).*

112. Tt is well to point out what the exact physical significance of ¢, is. It
implies the existence of a membranous stress, ¢.c., a stress such as a perfectly flexible
membrane could exhibit.

To investigate the properties of such a stress in a membrane coincident with the
actual surface, let ¢/, j,, & be three mutually perpendicular unit vectors, so that
[equation (1), § 107] the two latter are parallel to the surface. Consider an elemen-
tary triangle in the surface at the point under consideration, whose vector edges, taken
in the positive direction round the triangle, are yj’, — 3" + 2k = dp’ and — 2&. Tet
yF,, F, and 2F, be the forces exerted by the rest of the membrane on the triangle
across these three faces respectively. Since all other forces on the element are of a
higher order of smallness than these three, we have as the equation of motion

F=—yF, —2F,
= — F,S dp’ + F.Sk dp’
= — F,Sk (' dp’) — F.5" (' dp’)
= — @,/ (i dp’),

where ®, is a linear vector function of a vector.  This equation does not completely
determine @, since ¢'dp’ is not perfectly arbitrary, but confined to a plane.  The
arbitrary part of ®,” having no physical bearing on the problem in hand may be chosen
at will. For present purposes it is convenient to define ®," completely by the

equation
&/w = — F,Sko — F.50,

where w is a perfectly arbitrary vector. This gives
M =0. . . . . . . . . . . (28).

[This is not always the most convenient way of choosing the arbitrary part of ®,” as,
for instance, in the study of surface tension. ]

Since the membrane is perfectly flexible F, and F, are parallel to the tangent plane
and, therefore, ®, only operates on vectors in the plane, and strains them in the
plane. Thus ®," has four disposable scalars.

Calling the side of dp’ towards which ¢'dp’ points the negative side, the above
amounts to saying that the force exerted across the element dp’ by the part of the
membrane on the positive side on the part on the negative side is — @, (idp’). [The
direction round any closed curve on the membrane, which is that of positive rotation

v # As with equation (6), § 100, this may be put in the form v,_; = [UraVi]u_s
MDCCCOXIL—A. 5 ¢
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round ¢ is, of course, considered positive.  Thus, for such a closed curve, ¢'dp’ points
inwards. This is the reason for taking the positive and negative sides as just defined.
It also accounts for the sign given to @, since the latter is thus brought into harmony
with the sign of the linear vector function which represents an ordinary stress.] This
stress will be called the stress @,

118. We now seek the force and couple per unit surface due to the stress ®;/.  For
this purpose, first take a finite portion of the surface. The force exerted by the
stress on any portion of the surface is

—[o, (1dp) = — ([, (/Vivy) d

by equation (3), § 5. Hence the force per unit surface due to the stress is
— @, (VIV))
Again, the couple for a finite portion of the surface round any arbitrary origin is
— Vo, (7dp) = — [[Vpey @/ Vivy)ds — [[vee, @vigas.
Hence (by the force per unit surface just obtained) the couple per unit surface

= — V{®,/ (V) = V{®/{ — Vid,/ v = V{®/{,

by equation (28). Assuming, which will be the case if there be no other couple per unit
surface, as is certainly true in our case, that there is no such stress couple per unit
surface, we see that V{®,/{ = 0 or ®, is self-conjugate. Thus @, is of exactly the
same type as ¢, and has three disposable coordinates only. [It is not necessary to
assume this couple zero since the problem may be treated in an exactly similar
manner to that of general stress (former paper, p. 106, et seq.).]

114. Now suppose ®, is an ““external ” stress in the actual surface under con-
sideration. The part of Q8¢ due to it will be [[S6p'®," ('Vi'V ") ds’ — [S8p'®, (V'dp’),
so that the only way in which the expression (13) is affected by these new terms is
that ¢, must be changed into ¢, + ®,. Similarly for all the subsequent expressions
in which ¢, occurs. This shows that ¢, is a stress of the kind contemplated.

The bearing of this on capillary phenomena will not be discussed here, because this
is foreign to the objects of the present paper. It was necessary in this paper to show
the general results flowing from the existence of /..

It should, however, be remarked that this stress, though not affecting the
mechanicai action of the field on a body as a whole, would affect the strains of a
body, and probably be sometimes comparable in this effect with the similar effects
resulting from the dependence of I on strain.
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115. In conclusion, let me remark that in several respects the above investigations
might, be generalised. It is not hard to take account of the slipping of surfaces over
one another, both with regard to reversible and irreversible phenomena. It is harder,
but not impossible, to take account of the existence and relative motion in identically
the same portion of space of two media, such as the ether and air, or as two different
kinds of matter, as in diffusion and chemical phenomena (though, of course, in the
two last cases, the two media do not probably really exist in the same portion of space
—a statement not proven). I have refrained from this in the present paper for two
reasons : first, to keep the length of the paper within reasonable hounds, and
secondly, not to render the subject more intricate than is absolutely necessary. My
aim has been not so much to establish incontrovertible results as to develope a new
method of treatment, more powerful, and in reality much simpler than those which
are in use to-day. If I have succeeded in convincing my readers that this method is
worthy of study, the main object of the present paper is attained. Meanwhile the
matters that have been just indicated can be left over for future consideration.

5 ¢ 2



